电池(电)
锂(药物)
储能
比能量
锌
电极
泄流深度
材料科学
金属锂
化学
冶金
阳极
物理
热力学
医学
功率(物理)
物理化学
内分泌学
作者
Brandon J. Hopkins,Christopher N. Chervin,Jeffrey W. Long,Debra R. Rolison,Joseph F. Parker
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2020-10-13
卷期号:5 (11): 3405-3408
被引量:38
标识
DOI:10.1021/acsenergylett.0c01994
摘要
Commercial primary zinc–air batteries provide 450 Wh kgcell–1 (at the cell level), but the practical specific energy of secondary zinc–air batteries remains unclear. Using a specific-energy model and data from reported zinc–air cells, we show that some rechargeable zinc–air electrode materials may already be capable of enabling system-level specific energies between 200 and 450 Wh kgsys–1. These values rival best-case projections for battery packs using lithium–sulfur, lithium metal paired with layered metal oxides, or open lithium–air. By performing a sensitivity analysis on the reported specific-energy model, we show that depth of discharge, areal discharge capacity, and solid-volume fraction of the porous Zn electrode are the most important parameters for increasing specific energy, rather than discharge voltage. To achieve a high specific energy, bipolar zinc–air cells need to cycle above 40% depth of discharge with areal discharge energies >100 mWh cmgeo–2.
科研通智能强力驱动
Strongly Powered by AbleSci AI