区间(图论)
有限元法
转化(遗传学)
区间算术
扩展(谓词逻辑)
功能(生物学)
仿射变换
算法
桥(图论)
仿射算法
数学
依赖关系(UML)
计算机科学
数学优化
应用数学
结构工程
工程类
人工智能
几何学
数学分析
组合数学
内科学
生物化学
有界函数
基因
化学
生物
程序设计语言
进化生物学
医学
作者
Deshan Shan,Y. H. Chai,Hao Dong,Zhonghui Li
标识
DOI:10.1142/s0219455420410126
摘要
Uncertainties in structural parameters and measurements can be accounted for by incorporating interval analysis into the updating scheme of finite element models using a response-surface function. To facilitate the interval arithmetic operation, two different strategies are proposed in this paper to transform the response-surface function into a corresponding interval response-surface function. These strategies minimize the inherent interval overestimation that can arise from the variable dependency of the surrogate model. In the first strategy, the natural extension and centered-form extension methods are used to mitigate the interval overestimation of the surrogate model, which may or may not contain interaction terms. In the second strategy, the natural extensión method is also adopted to realize the interval transformation of the surrogate model containing interaction terms but an affine arithmetic is further introduced to minimize the interval overestimation. To demonstrate the efficacy of the proposed method, model parameters are determined from an instrumented model of a cable-stayed bridge tested on a shaking table. Results show that the proposed updating method is feasible and effective for applications to finite element models of complex bridge structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI