A unique urinary metabolomic signature for the detection of pancreatic ductal adenocarcinoma

代谢组学 代谢物 医学 生物标志物 接收机工作特性 内科学 泌尿系统 队列 肿瘤科 胰腺导管腺癌 阶段(地层学) 胰腺癌 癌症 生物信息学 生物 古生物学 生物化学
作者
Sumit Sahni,Advait Pandya,William J. Hadden,Christopher B. Nahm,Sarah Maloney,Victoria Cook,James A. Toft,Lorna Wilkinson‐White,Anthony J. Gill,Jaswinder S. Samra,Anthony C. Dona,Anubhav Mittal
出处
期刊:International Journal of Cancer [Wiley]
卷期号:148 (6): 1508-1518 被引量:18
标识
DOI:10.1002/ijc.33368
摘要

Abstract Our study aimed to identify a urinary metabolite panel for the detection/diagnosis of pancreatic ductal adenocarcinoma (PDAC). PDAC continues to have poor survival outcomes. One of the major reasons for poor prognosis is the advanced stage of the disease at diagnosis. Hence, identification of a novel and cost‐effective biomarker signature for early detection/diagnosis of PDAC could lead to better survival outcomes. Untargeted metabolomics was employed to identify a novel metabolite‐based biomarker signature for PDAC diagnosis. Urinary metabolites from 92 PDAC patients (56 discovery cohort and 36 validation cohort) were compared with 56 healthy volunteers using 1 H nuclear magnetic resonance spectroscopy. Multivariate (partial‐least squares discriminate analysis) and univariate (Mann‐Whitney's U ‐test) analyses were performed to identify a metabolite panel which can be used to detect PDAC. The selected metabolites were further validated for their diagnostic potential using the area under the receiver operating characteristic (AUROC) curve. Statistical analysis identified a six‐metabolite panel (trigonelline, glycolate, hippurate, creatine, myoinositol and hydroxyacetone), which demonstrated high potential to diagnose PDAC, with AUROC of 0.933 and 0.864 in the discovery and validation cohort, respectively. Notably, the identified panel also demonstrated very high potential to diagnose early‐stage (I and II) PDAC patients with AUROC of 0.897. These results demonstrate that the selected metabolite signature could be used to detect PDAC and will pave the way for the development of a urinary test for detection/diagnosis of PDAC.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万松辉完成签到,获得积分10
2秒前
biu完成签到 ,获得积分10
2秒前
3秒前
勇yi完成签到,获得积分10
6秒前
阿星捌发布了新的文献求助10
9秒前
韩韩完成签到 ,获得积分10
16秒前
无极微光应助张鱼小丸子采纳,获得20
24秒前
mengli完成签到 ,获得积分10
28秒前
科研通AI6.1应助阿星捌采纳,获得10
31秒前
张鱼小丸子完成签到,获得积分10
32秒前
35秒前
35秒前
35秒前
35秒前
35秒前
35秒前
35秒前
35秒前
35秒前
35秒前
SPARK应助科研通管家采纳,获得10
36秒前
SPARK应助科研通管家采纳,获得10
36秒前
SPARK应助科研通管家采纳,获得10
36秒前
乐乐应助Robin95采纳,获得30
40秒前
azzkmj发布了新的文献求助10
40秒前
费老五完成签到 ,获得积分10
40秒前
科研通AI6.2应助zyp采纳,获得10
42秒前
舒心的雍发布了新的文献求助10
44秒前
黙宇循光完成签到 ,获得积分10
44秒前
yhh完成签到,获得积分10
44秒前
仙兮熙完成签到 ,获得积分10
49秒前
u亩完成签到 ,获得积分10
49秒前
一眼完成签到,获得积分20
51秒前
51秒前
冬虫夏草完成签到,获得积分10
53秒前
zyp发布了新的文献求助10
57秒前
qweqwe完成签到,获得积分10
1分钟前
1分钟前
Banbor2021完成签到,获得积分10
1分钟前
李_小_八完成签到,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851942
求助须知:如何正确求助?哪些是违规求助? 6274706
关于积分的说明 15627471
捐赠科研通 4967879
什么是DOI,文献DOI怎么找? 2678818
邀请新用户注册赠送积分活动 1623007
关于科研通互助平台的介绍 1579466