Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models

人工神经网络 支持向量机 均方误差 数学 灌溉 蒸腾作用 计算机科学 统计 人工智能 Boosting(机器学习) 机器学习 梯度升压 农学 随机森林 光合作用 植物 生物
作者
Junliang Fan,Jing Zheng,Lifeng Wu,Fucang Zhang
出处
期刊:Agricultural Water Management [Elsevier]
卷期号:245: 106547-106547 被引量:163
标识
DOI:10.1016/j.agwat.2020.106547
摘要

Accurate measurement or estimation of plant transpiration (T) is of great significance for understanding crop water use, predicting crop yield and designing irrigation schedule in agricultural production. Nevertheless, direct measurement of T is difficult, expensive, destructive and time-consuming. This study explored the applicability of support vector machines (SVM), extreme gradient boosting (XGBoost), single-layer artificial neural networks (ANN) and deep neural networks (DNN) models for estimating daily T of summer maize in Northwest China. Four input combinations of meteorological (T max , T min , RH, U and R s ), soil (SWC) and crop (LAI) variables were employed to explore the effects of various variables on daily T estimation. The whole dataset during the four maize growing seasons of 2015–2018 were randomly divided into two subsets: 80% for model training and 20% for model testing. The results showed that the performances of the four machine learning models improved by 10.1–13.1%, 15.7–23.8% and 36.1–46.2% in terms of RMSE during testing when SWC (0.556–0.675 mm d −1 ), LAI (0.477–0.621 mm d −1 ) and both of them (0.344–0.482 mm d −1 ) were further incorporated respectively, compared to models with only meteorological variables as inputs (0.621–0.754 mm d −1 ). DNN models (R 2 = 0.816–954, RMSE = 0.344–0.621 d −1 , MAE = 0.256–0.445 mm d −1 and NSE = 0.902–0.972) slightly outperformed SVM models (R 2 = 0.731–0.948, RMSE = 0.370–0.688 mm d −1 , MAE = 0.286–0.500 mm d −1 and NSE = 0.880–0.967) during testing, followed by XGBoost models (R 2 = 0.739–0.929, RMSE = 0.455–0.721 mm d −1 , MAE = 0.355–0.519 mm;d −1 and NSE = 0.872–0.947) and ANN models (R 2 = 0.683–0.913, RMSE = 0.482–0.754 mm d −1 , MAE = 0.368–0.545 mm d −1 and NSE = 0.840–0.936) under the four input combinations. The incorporation of SWC or/and LAI in the machine learning models is highly recommended for accurate daily maize T estimation. The DNN model is more effective for daily maize T estimation due to its advantage in modeling high-order complex relationships between T and its driving variables through multiple levels of feature abstraction. ● Daily maize transpiration was estimated using SVM, XGBoost, ANN and DNN models. ● Models were improved by 10.1–13.1%, 15.7–23.8% and 36.1–46.2% with SWC, LAI and both. ● DNN model slightly outperformed SVM model, followed by XGBoost and ANN models. ● Incorporation of SWC or/and LAI in machine learning models was highly recommended. ● DNN model is more effective for T estimation due to multiple levels of feature abstraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷嵩完成签到,获得积分10
2秒前
3秒前
Betty发布了新的文献求助200
4秒前
加油完成签到,获得积分10
4秒前
朱少龙发布了新的文献求助10
4秒前
Kylin发布了新的文献求助10
5秒前
6秒前
所所应助杨树采纳,获得10
7秒前
天祥发布了新的文献求助10
7秒前
8秒前
543完成签到,获得积分10
8秒前
8秒前
wanci应助panda采纳,获得10
8秒前
woyufengtian完成签到,获得积分10
8秒前
10秒前
10秒前
11秒前
11秒前
Str0n完成签到,获得积分10
12秒前
酷酷嵩发布了新的文献求助10
13秒前
NI完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
傻自强呀完成签到,获得积分10
14秒前
MJJ发布了新的文献求助10
15秒前
Zoye发布了新的文献求助10
16秒前
666发布了新的文献求助10
18秒前
18秒前
天天快乐应助张豪杰采纳,获得10
19秒前
wanci应助MJJ采纳,获得10
19秒前
闪电侠完成签到 ,获得积分10
19秒前
husaheng发布了新的文献求助10
19秒前
20秒前
NI发布了新的文献求助30
20秒前
20秒前
panda发布了新的文献求助10
20秒前
英俊的铭应助Water103采纳,获得10
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514792
求助须知:如何正确求助?哪些是违规求助? 3097089
关于积分的说明 9234132
捐赠科研通 2792114
什么是DOI,文献DOI怎么找? 1532275
邀请新用户注册赠送积分活动 711890
科研通“疑难数据库(出版商)”最低求助积分说明 707045