Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning

医学 血管内治疗 冲程(发动机) 急性中风 缺血性中风 内科学 心脏病学 外科 缺血 动脉瘤 机械工程 工程类 组织纤溶酶原激活剂
作者
Gianluca Brugnara,Ulf Neuberger,Mustafa Ahmed Mahmutoglu,Martha Foltyn,Christian Herweh,Simon Nagel,Silvia Schönenberger,Sabine Heiland,Christian Ulfert,Peter A. Ringleb,Martin Bendszus,Markus Möhlenbruch,Johannes Pfaff,Philipp Kickingereder
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:51 (12): 3541-3551 被引量:125
标识
DOI:10.1161/strokeaha.120.030287
摘要

Background and Purpose: This study assessed the predictive performance and relative importance of clinical, multimodal imaging, and angiographic characteristics for predicting the clinical outcome of endovascular treatment for acute ischemic stroke. Methods: A consecutive series of 246 patients with acute ischemic stroke and large vessel occlusion in the anterior circulation who underwent endovascular treatment between April 2014 and January 2018 was analyzed. Clinical, conventional imaging (electronic Alberta Stroke Program Early CT Score, acute ischemic volume, site of vessel occlusion, and collateral score), and advanced imaging characteristics (CT-perfusion with quantification of ischemic penumbra and infarct core volumes) before treatment as well as angiographic (interval groin puncture-recanalization, modified Thrombolysis in Cerebral Infarction score) and postinterventional clinical (National Institutes of Health Stroke Scale score after 24 hours) and imaging characteristics (electronic Alberta Stroke Program Early CT Score, final infarction volume after 18–36 hours) were assessed. The modified Rankin Scale (mRS) score at 90 days (mRS-90) was used to measure patient outcome (favorable outcome: mRS-90 ≤2 versus unfavorable outcome: mRS-90 >2). Machine-learning with gradient boosting classifiers was used to assess the performance and relative importance of the extracted characteristics for predicting mRS-90. Results: Baseline clinical and conventional imaging characteristics predicted mRS-90 with an area under the receiver operating characteristics curve of 0.740 (95% CI, 0.733–0.747) and an accuracy of 0.711 (95% CI, 0.705–0.717). Advanced imaging with CT-perfusion did not improved the predictive performance (area under the receiver operating characteristics curve, 0.747 [95% CI, 0.740–0.755]; accuracy, 0.720 [95% CI, 0.714–0.727]; P =0.150). Further inclusion of angiographic and postinterventional characteristics significantly improved the predictive performance (area under the receiver operating characteristics curve, 0.856 [95% CI, 0.850–0.861]; accuracy, 0.804 [95% CI, 0.799–0.810]; P <0.001). The most important parameters for predicting mRS 90 were National Institutes of Health Stroke Scale score after 24 hours (importance =100%), premorbid mRS score (importance =44%) and final infarction volume on postinterventional CT after 18 to 36 hours (importance =32%). Conclusions: Integrative assessment of clinical, multimodal imaging, and angiographic characteristics with machine-learning allowed to accurately predict the clinical outcome following endovascular treatment for acute ischemic stroke. Thereby, premorbid mRS was the most important clinical predictor for mRS-90, and the final infarction volume was the most important imaging predictor, while the extent of hemodynamic impairment on CT-perfusion before treatment had limited importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
SY发布了新的文献求助10
2秒前
可爱小哪吒完成签到,获得积分10
2秒前
斯文败类应助doudou采纳,获得10
3秒前
苹果完成签到,获得积分10
3秒前
3秒前
一颗咸蛋黄完成签到 ,获得积分20
5秒前
打打应助5477采纳,获得10
5秒前
灵巧坤发布了新的文献求助30
5秒前
5秒前
小猴完成签到,获得积分10
6秒前
Raymond应助NANA采纳,获得10
7秒前
Sean完成签到 ,获得积分10
7秒前
7秒前
无情山水发布了新的文献求助10
8秒前
锦纹完成签到,获得积分10
8秒前
南桥发布了新的文献求助10
8秒前
8秒前
伶俐的书白完成签到,获得积分10
9秒前
科研通AI5应助威武诺言采纳,获得10
9秒前
9秒前
LXL完成签到,获得积分10
9秒前
杳鸢应助三金采纳,获得20
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
英俊的铭应助yyj采纳,获得10
10秒前
SV发布了新的文献求助10
10秒前
11秒前
12发布了新的文献求助10
11秒前
JamesPei应助化学狗采纳,获得10
11秒前
胡图图发布了新的文献求助10
11秒前
12秒前
xm完成签到,获得积分10
13秒前
谦让的含海完成签到,获得积分10
13秒前
所所应助包容的剑采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762