Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning

医学 血管内治疗 冲程(发动机) 急性中风 缺血性中风 内科学 心脏病学 外科 缺血 动脉瘤 机械工程 工程类 组织纤溶酶原激活剂
作者
Gianluca Brugnara,Ulf Neuberger,Mustafa Ahmed Mahmutoglu,Martha Foltyn,Christian Herweh,Simon Nagel,Silvia Schönenberger,Sabine Heiland,Christian Ulfert,Peter A. Ringleb,Martin Bendszus,Markus Möhlenbruch,Johannes Pfaff,Philipp Kickingereder
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:51 (12): 3541-3551 被引量:140
标识
DOI:10.1161/strokeaha.120.030287
摘要

Background and Purpose: This study assessed the predictive performance and relative importance of clinical, multimodal imaging, and angiographic characteristics for predicting the clinical outcome of endovascular treatment for acute ischemic stroke. Methods: A consecutive series of 246 patients with acute ischemic stroke and large vessel occlusion in the anterior circulation who underwent endovascular treatment between April 2014 and January 2018 was analyzed. Clinical, conventional imaging (electronic Alberta Stroke Program Early CT Score, acute ischemic volume, site of vessel occlusion, and collateral score), and advanced imaging characteristics (CT-perfusion with quantification of ischemic penumbra and infarct core volumes) before treatment as well as angiographic (interval groin puncture-recanalization, modified Thrombolysis in Cerebral Infarction score) and postinterventional clinical (National Institutes of Health Stroke Scale score after 24 hours) and imaging characteristics (electronic Alberta Stroke Program Early CT Score, final infarction volume after 18–36 hours) were assessed. The modified Rankin Scale (mRS) score at 90 days (mRS-90) was used to measure patient outcome (favorable outcome: mRS-90 ≤2 versus unfavorable outcome: mRS-90 >2). Machine-learning with gradient boosting classifiers was used to assess the performance and relative importance of the extracted characteristics for predicting mRS-90. Results: Baseline clinical and conventional imaging characteristics predicted mRS-90 with an area under the receiver operating characteristics curve of 0.740 (95% CI, 0.733–0.747) and an accuracy of 0.711 (95% CI, 0.705–0.717). Advanced imaging with CT-perfusion did not improved the predictive performance (area under the receiver operating characteristics curve, 0.747 [95% CI, 0.740–0.755]; accuracy, 0.720 [95% CI, 0.714–0.727]; P =0.150). Further inclusion of angiographic and postinterventional characteristics significantly improved the predictive performance (area under the receiver operating characteristics curve, 0.856 [95% CI, 0.850–0.861]; accuracy, 0.804 [95% CI, 0.799–0.810]; P <0.001). The most important parameters for predicting mRS 90 were National Institutes of Health Stroke Scale score after 24 hours (importance =100%), premorbid mRS score (importance =44%) and final infarction volume on postinterventional CT after 18 to 36 hours (importance =32%). Conclusions: Integrative assessment of clinical, multimodal imaging, and angiographic characteristics with machine-learning allowed to accurately predict the clinical outcome following endovascular treatment for acute ischemic stroke. Thereby, premorbid mRS was the most important clinical predictor for mRS-90, and the final infarction volume was the most important imaging predictor, while the extent of hemodynamic impairment on CT-perfusion before treatment had limited importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
王艺欣发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
逻辑猫完成签到,获得积分10
2秒前
2秒前
PhD发布了新的文献求助10
2秒前
那时花开应助柠檬采纳,获得10
3秒前
3秒前
Yinzixin完成签到,获得积分10
3秒前
3秒前
4秒前
落后蓝天完成签到,获得积分10
4秒前
4秒前
FashionBoy应助孙博采纳,获得10
4秒前
潇洒凡柔发布了新的文献求助10
4秒前
Xiao_Fu发布了新的文献求助10
5秒前
胡英俊完成签到,获得积分10
5秒前
博士发布了新的文献求助10
5秒前
单身的翠容完成签到,获得积分10
5秒前
kryie完成签到,获得积分10
5秒前
科目三应助七一同学采纳,获得10
5秒前
6秒前
Lucas应助二狗子采纳,获得10
6秒前
Yaaaaaa发布了新的文献求助10
6秒前
万事喜完成签到,获得积分10
7秒前
724发布了新的文献求助10
7秒前
8秒前
8秒前
丘比特应助兔子吃胡萝卜采纳,获得10
8秒前
8秒前
上官若男应助学时习采纳,获得10
8秒前
花青关注了科研通微信公众号
8秒前
开放雪珊发布了新的文献求助10
8秒前
重要问丝完成签到 ,获得积分10
9秒前
畅快大象发布了新的文献求助10
9秒前
酒后少女的梦完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277