发光
荧光粉
光致发光
分析化学(期刊)
热重分析
大气温度范围
掺杂剂
兴奋剂
热稳定性
结构精修
材料科学
离子
化学
猝灭(荧光)
物理化学
荧光
晶体结构
光电子学
热力学
结晶学
光学
有机化学
物理
作者
Xiaoli Gao,Feng Song,Adnan Khan,Ziyu Chen,Dandan Ju,Xu Sang,Ming Feng,Lisa Liu
标识
DOI:10.1016/j.jlumin.2020.117707
摘要
This work aims at studying optical properties of Eu3+ dopant in K0·3Bi0·7F2.4 host and seeking their applications. A series of orange red emitting K0·3Bi0·7F2.4:Eu3+ phosphors were synthesized via a chemical precipitation reaction method at room temperature, which is convenient, economical and less time consuming. XRD and Rietveld refinement results confirm the pure phase of as-prepared materials. The optimal doping concentrations are determined to be 40%mmol, and both of the corresponding concentration quenching mechanism have been validated to be dipole−dipole interactions. Additionally, the Judd-Ofelt theory was selected to study the local structure environment of the Eu3+ ions in the K0·3Bi0·7F2.4 host lattices and the tendency of J-O parameters (Ω2>Ω4) confirm the asymmetric environment around Eu3+ ions. The thermogravimetric analysis and activation energy results of K0·3Bi0·7F2.4:Eu3+ materials with high thermal stability exhibit promising performances for temperature sensor applications. Moreover, the temperature-dependent of samples are investigated in a large temperature range of 303–573 K to explore thermal quenching performance. Significantly, luminescent temperature sensing has been accomplished by specifically utilizing thermal quenching performance and high temperature sensitivity around 1.54 × 104 K−1 is achieved, which indicates that K0·3Bi0·7F2.4:Eu3+ fluorescent nanoparticles can be exploited for promising luminescent thermometer. Another important results are the K0·3Bi0·7F2.4:40%Eu3+ nanoparticles exhibiting orange red emission with the CIE coordinates (0.6226, 0.3747) and the luminescence photographs of K0·3Bi0·7F2.4:40%Eu3+ samples under UV lamp (365 nm) irradiation revealing obvious orange red. Besides, the color purity of orange red K0·3Bi0·7F2.4:40%Eu3+ phosphor is demonstrated to be about 98.4%, which indicate that the as-prepared K0·3Bi0·7F2.4:Eu3+ phosphors may be a candidate component applied in UV w-LEDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI