Deep-Convolution-Based LSTM Network for Remaining Useful Life Prediction

预言 深度学习 卷积(计算机科学) 计算机科学 卷积神经网络 人工智能 编码(内存) 模式识别(心理学) 计算 网络体系结构 人工神经网络 数据挖掘 机器学习 算法 计算机安全
作者
Meng Ma,Zhu Mao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (3): 1658-1667 被引量:282
标识
DOI:10.1109/tii.2020.2991796
摘要

Accurate prediction of remaining useful life (RUL) has been a critical and challenging problem in the field of prognostics and health management (PHM), which aims to make decisions on which component needs to be replaced when. In this article, a novel deep neural network named convolution-based long short-term memory (CLSTM) network is proposed to predict the RUL of rotating machineries mining the in situ vibration data. Different from previous research that simply connects a convolutional neural network (CNN) to a long short-term memory (LSTM) network serially, the proposed network conducts convolutional operation on both the input-to-state and state-to-state transitions of the LSTM, which contains both time-frequency and temporal information of signals, not only preserving the advantages of LSTM, but also incorporating time-frequency features. The convolutional structure in the LSTM has the ability to capture long-term dependencies and extract features from the time-frequency domain at the same time. By stacking the multiple CLSTM layer-by-layer and forming an encoding-forecasting architecture, the deep learning model is established for RUL prediction in this article. Run-to-failure tests on bearings are conducted, and vibration responses are collected. Using the proposed algorithm, RUL is predicted, and as a comparison, the performance from other methods, including deep CNNs and deep LSTM, is evaluated using the same dataset. The comparative study indicates that the proposed CLSTM network outperforms the current deep learning algorithms in URL prediction and system prognosis with respect to better accuracy and computation efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
h丶小虫完成签到,获得积分10
刚刚
4秒前
4秒前
4秒前
5秒前
光亮的天真完成签到 ,获得积分10
6秒前
6秒前
科研通AI5应助复活的军团采纳,获得30
7秒前
丁牛青发布了新的文献求助10
8秒前
shacodow发布了新的文献求助10
9秒前
11秒前
宇心完成签到,获得积分10
11秒前
代小葵完成签到,获得积分10
14秒前
15秒前
科研通AI5应助妩媚采纳,获得10
16秒前
是容与呀完成签到,获得积分10
16秒前
xiaokang123应助UGO采纳,获得10
19秒前
刻苦的白梅完成签到,获得积分10
19秒前
Wei完成签到,获得积分10
19秒前
20秒前
Mojito发布了新的文献求助10
20秒前
20秒前
西原的橙果完成签到,获得积分10
22秒前
Rookie完成签到 ,获得积分10
23秒前
JamesPei应助大利采纳,获得10
23秒前
王文豪发布了新的文献求助10
24秒前
羞涩的曼凡完成签到,获得积分10
25秒前
FloppyWow发布了新的文献求助10
25秒前
长情半邪完成签到 ,获得积分10
26秒前
领导范儿应助MRM采纳,获得10
26秒前
eli完成签到,获得积分10
26秒前
28秒前
闪闪的妙竹给闪闪的妙竹的求助进行了留言
28秒前
28秒前
陈龙完成签到,获得积分10
28秒前
31秒前
李爱国应助王文豪采纳,获得10
31秒前
Emily完成签到,获得积分20
32秒前
替我活着发布了新的文献求助10
32秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174