已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of Synergy Extrapolation for Predicting Unmeasured Muscle Excitations from Measured Muscle Synergies

肌电图 外推法 计算机科学 物理医学与康复 数学 统计 医学
作者
Di Ao,Mohammad S. Shourijeh,Carolynn Patten,Benjamin J. Fregly
出处
期刊:Frontiers in Computational Neuroscience [Frontiers Media SA]
卷期号:14 被引量:28
标识
DOI:10.3389/fncom.2020.588943
摘要

Electromyography (EMG)-driven musculoskeletal modeling relies on high-quality measurements of muscle electrical activity to estimate muscle forces. However, a critical challenge for practical deployment of this approach is missing EMG data from muscles that contribute substantially to joint moments. This situation may arise due to either the inability to measure deep muscles with surface electrodes or the lack of a sufficient number of EMG channels. Muscle synergy analysis (MSA) is a dimensionality reduction approach that decomposes a large number of muscle excitations into a small number of time-varying synergy excitations along with time-invariant synergy weights that define the contribution of each synergy excitation to all muscle excitations. This study evaluates how well missing muscle excitations can be predicted using synergy excitations extracted from muscles with available EMG data (henceforth called “synergy extrapolation” or SynX). The method was evaluated using a gait data set collected from a stroke survivor walking on an instrumented treadmill at self-selected and fastest-comfortable speeds. The evaluation process started with full calibration of a lower-body EMG-driven model using 16 measured EMG channels (collected using surface and fine wire electrodes) per leg. One fine wire EMG channel (either iliopsoas or adductor longus) was then treated as unmeasured. The synergy weights associated with the unmeasured muscle excitation were predicted by solving a nonlinear optimization problem where the errors between inverse dynamics and EMG-driven joint moments were minimized. The prediction process was performed for different synergy analysis algorithms (principal component analysis and non-negative matrix factorization), EMG normalization methods, and numbers of synergies. SynX performance was most influenced by the choice of synergy analysis algorithm and number of synergies. Principal component analysis with five or six synergies consistently predicted unmeasured muscle excitations the most accurately and with the greatest robustness to EMG normalization method. Furthermore, the associated joint moment matching accuracy was comparable to that produced by initial EMG-driven model calibration using all 16 EMG channels per leg. SynX may facilitate the assessment of human neuromuscular control and biomechanics when important EMG signals are missing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助小付采纳,获得10
刚刚
1秒前
1秒前
岸上牛完成签到,获得积分10
1秒前
科研通AI2S应助快乐依云采纳,获得10
2秒前
kwm完成签到,获得积分10
3秒前
3秒前
吴雨涛发布了新的文献求助10
6秒前
科目三应助CSY采纳,获得10
7秒前
Lazarus发布了新的文献求助10
7秒前
kkx发布了新的文献求助10
7秒前
科研通AI5应助飞鸟采纳,获得10
8秒前
必毕业发布了新的文献求助10
8秒前
沙漠水发布了新的文献求助10
9秒前
maoloen完成签到,获得积分10
10秒前
震动的白山完成签到 ,获得积分10
12秒前
13秒前
CodeCraft应助超级诗桃采纳,获得10
14秒前
英俊的铭应助Wo了喝采纳,获得20
15秒前
16秒前
18秒前
18秒前
芒果椿完成签到,获得积分20
20秒前
yunga发布了新的文献求助10
21秒前
emeqwq完成签到,获得积分10
21秒前
必毕业完成签到,获得积分10
23秒前
25秒前
伶俐哈密瓜完成签到,获得积分20
25秒前
26秒前
28秒前
28秒前
29秒前
29秒前
Hello应助HS采纳,获得10
30秒前
醉熏的觅柔完成签到,获得积分20
31秒前
超级诗桃发布了新的文献求助10
32秒前
CSY发布了新的文献求助10
32秒前
万能图书馆应助zhouzhou采纳,获得10
32秒前
32秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538721
求助须知:如何正确求助?哪些是违规求助? 3116413
关于积分的说明 9325163
捐赠科研通 2814274
什么是DOI,文献DOI怎么找? 1546563
邀请新用户注册赠送积分活动 720607
科研通“疑难数据库(出版商)”最低求助积分说明 712086