DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images

计算机科学 人工智能 糖尿病性视网膜病变 分级(工程) 生成对抗网络 眼底(子宫) 分割 模式识别(心理学) 概化理论 深度学习 计算机视觉 眼科 医学 数学 糖尿病 土木工程 内分泌学 工程类 统计
作者
Yi Zhou,Boyang Wang,Xiaodong He,Shanshan Cui,Ling Shao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 56-66 被引量:114
标识
DOI:10.1109/jbhi.2020.3045475
摘要

Diabetic retinopathy (DR) is a complication of diabetes that severely affects eyes. It can be graded into five levels of severity according to international protocol. However, optimizing a grading model to have strong generalizability requires a large amount of balanced training data, which is difficult to collect, particularly for the high severity levels. Typical data augmentation methods, including random flipping and rotation, cannot generate data with high diversity. In this paper, we propose a diabetic retinopathy generative adversarial network (DR-GAN) to synthesize high-resolution fundus images which can be manipulated with arbitrary grading and lesion information. Thus, large-scale generated data can be used for more meaningful augmentation to train a DR grading and lesion segmentation model. The proposed retina generator is conditioned on the structural and lesion masks, as well as adaptive grading vectors sampled from the latent grading space, which can be adopted to control the synthesized grading severity. Moreover, a multi-scale spatial and channel attention module is devised to improve the generation ability to synthesize small details. Multi-scale discriminators are designed to operate from large to small receptive fields, and joint adversarial losses are adopted to optimize the whole network in an end-to-end manner. With extensive experiments evaluated on the EyePACS dataset connected to Kaggle, as well as the FGADR dataset, we validate the effectiveness of our method, which can both synthesize highly realistic ( 1280 ×1280) controllable fundus images and contribute to the DR grading task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
徐小美发布了新的文献求助30
1秒前
1212发布了新的文献求助10
2秒前
111完成签到,获得积分10
2秒前
ddbc完成签到,获得积分10
3秒前
在雨里思考完成签到,获得积分10
3秒前
4秒前
乐乐应助杨小鸿采纳,获得10
5秒前
5秒前
紧张的谷槐完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
幽逸完成签到,获得积分10
6秒前
Szw666完成签到,获得积分10
11秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
jojo完成签到 ,获得积分10
13秒前
14秒前
lll完成签到,获得积分20
14秒前
VAN发布了新的文献求助10
17秒前
徐小美完成签到,获得积分20
18秒前
传奇3应助lll采纳,获得30
18秒前
老仙翁完成签到,获得积分10
18秒前
lilyz615完成签到,获得积分10
20秒前
21秒前
ding应助听见采纳,获得10
23秒前
23秒前
24秒前
斯文败类应助kuny采纳,获得10
24秒前
77发布了新的文献求助10
25秒前
aniver完成签到 ,获得积分10
26秒前
27秒前
痕丶歆完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
JY完成签到,获得积分10
29秒前
酷波er应助77采纳,获得10
29秒前
开朗啤酒完成签到,获得积分10
30秒前
独特的缘分完成签到,获得积分10
31秒前
震动的听安完成签到,获得积分10
32秒前
调皮语雪完成签到 ,获得积分10
34秒前
大力向南完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978