DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images

计算机科学 人工智能 糖尿病性视网膜病变 分级(工程) 生成对抗网络 眼底(子宫) 分割 模式识别(心理学) 概化理论 深度学习 计算机视觉 眼科 医学 数学 糖尿病 土木工程 内分泌学 工程类 统计
作者
Yi Zhou,Boyang Wang,Xiaodong He,Shiyong Cui,Ling Shao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 56-66 被引量:70
标识
DOI:10.1109/jbhi.2020.3045475
摘要

Diabetic retinopathy (DR) is a complication of diabetes that severely affects eyes. It can be graded into five levels of severity according to international protocol. However, optimizing a grading model to have strong generalizability requires a large amount of balanced training data, which is difficult to collect, particularly for the high severity levels. Typical data augmentation methods, including random flipping and rotation, cannot generate data with high diversity. In this paper, we propose a diabetic retinopathy generative adversarial network (DR-GAN) to synthesize high-resolution fundus images which can be manipulated with arbitrary grading and lesion information. Thus, large-scale generated data can be used for more meaningful augmentation to train a DR grading and lesion segmentation model. The proposed retina generator is conditioned on the structural and lesion masks, as well as adaptive grading vectors sampled from the latent grading space, which can be adopted to control the synthesized grading severity. Moreover, a multi-scale spatial and channel attention module is devised to improve the generation ability to synthesize small details. Multi-scale discriminators are designed to operate from large to small receptive fields, and joint adversarial losses are adopted to optimize the whole network in an end-to-end manner. With extensive experiments evaluated on the EyePACS dataset connected to Kaggle, as well as the FGADR dataset, we validate the effectiveness of our method, which can both synthesize highly realistic ( 1280 ×1280) controllable fundus images and contribute to the DR grading task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助不用养就乐多采纳,获得50
1秒前
anyelengxin完成签到,获得积分20
2秒前
淡淡梦容完成签到,获得积分10
2秒前
2秒前
董山君完成签到 ,获得积分10
2秒前
ytong发布了新的文献求助10
2秒前
乐观碧彤发布了新的文献求助10
3秒前
4秒前
闪闪的从彤完成签到 ,获得积分10
4秒前
5秒前
淡淡梦容发布了新的文献求助10
5秒前
英俊安蕾发布了新的文献求助10
7秒前
8秒前
LOKL发布了新的文献求助10
9秒前
温两两发布了新的文献求助10
10秒前
传奇3应助ytong采纳,获得10
12秒前
博修发布了新的文献求助10
12秒前
13秒前
酷波er应助年轻的烧鹅采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
15136780701完成签到 ,获得积分10
15秒前
FashionBoy应助活泼的惜天采纳,获得10
15秒前
TT完成签到,获得积分10
15秒前
龚广山完成签到,获得积分10
15秒前
沃沃爹发布了新的文献求助10
15秒前
xin完成签到 ,获得积分10
16秒前
17秒前
负数发布了新的文献求助10
18秒前
18秒前
19秒前
森森完成签到,获得积分10
19秒前
陶1122发布了新的文献求助10
20秒前
dywen完成签到,获得积分10
20秒前
20秒前
科研通AI2S应助棋士采纳,获得10
20秒前
xixi890430发布了新的文献求助10
21秒前
迷人成协发布了新的文献求助10
22秒前
ZORO完成签到,获得积分10
22秒前
23秒前
完美世界应助小圆采纳,获得30
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149