DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images

计算机科学 人工智能 糖尿病性视网膜病变 分级(工程) 生成对抗网络 眼底(子宫) 分割 模式识别(心理学) 概化理论 深度学习 计算机视觉 眼科 医学 数学 糖尿病 土木工程 内分泌学 工程类 统计
作者
Yi Zhou,Boyang Wang,Xiaodong He,Shiyong Cui,Ling Shao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 56-66 被引量:70
标识
DOI:10.1109/jbhi.2020.3045475
摘要

Diabetic retinopathy (DR) is a complication of diabetes that severely affects eyes. It can be graded into five levels of severity according to international protocol. However, optimizing a grading model to have strong generalizability requires a large amount of balanced training data, which is difficult to collect, particularly for the high severity levels. Typical data augmentation methods, including random flipping and rotation, cannot generate data with high diversity. In this paper, we propose a diabetic retinopathy generative adversarial network (DR-GAN) to synthesize high-resolution fundus images which can be manipulated with arbitrary grading and lesion information. Thus, large-scale generated data can be used for more meaningful augmentation to train a DR grading and lesion segmentation model. The proposed retina generator is conditioned on the structural and lesion masks, as well as adaptive grading vectors sampled from the latent grading space, which can be adopted to control the synthesized grading severity. Moreover, a multi-scale spatial and channel attention module is devised to improve the generation ability to synthesize small details. Multi-scale discriminators are designed to operate from large to small receptive fields, and joint adversarial losses are adopted to optimize the whole network in an end-to-end manner. With extensive experiments evaluated on the EyePACS dataset connected to Kaggle, as well as the FGADR dataset, we validate the effectiveness of our method, which can both synthesize highly realistic ( 1280 ×1280) controllable fundus images and contribute to the DR grading task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的丹寒关注了科研通微信公众号
1秒前
1秒前
爱肖肖的小李完成签到,获得积分10
2秒前
seven完成签到,获得积分10
2秒前
2秒前
忞嵅完成签到,获得积分10
3秒前
3秒前
纯真毛豆完成签到,获得积分10
3秒前
Epiphany完成签到,获得积分10
3秒前
凳子3333发布了新的文献求助10
5秒前
激动的严青完成签到,获得积分10
5秒前
牛阳光完成签到,获得积分10
6秒前
xhptzw发布了新的文献求助20
6秒前
hihi发布了新的文献求助10
8秒前
华仔应助晓千晨采纳,获得10
8秒前
Advance。完成签到,获得积分10
9秒前
小糖完成签到 ,获得积分10
11秒前
11秒前
11秒前
13秒前
14秒前
英俊的铭应助YAN1214采纳,获得10
14秒前
15秒前
共享精神应助啦啦采纳,获得10
16秒前
慕青应助Wang采纳,获得10
16秒前
研友_5Y9775发布了新的文献求助10
18秒前
妥妥酱完成签到,获得积分10
18秒前
18秒前
小墨墨完成签到 ,获得积分10
19秒前
july7292发布了新的文献求助10
20秒前
不配.应助多肉葡萄采纳,获得20
21秒前
科研通AI2S应助wanghuan采纳,获得10
22秒前
爆米花应助36524采纳,获得10
23秒前
意忆完成签到 ,获得积分10
23秒前
研友_5Y9775完成签到,获得积分10
24秒前
风秋杨完成签到 ,获得积分10
25秒前
小波同学。完成签到,获得积分10
26秒前
落山姬完成签到,获得积分10
26秒前
啦啦啦完成签到 ,获得积分10
27秒前
chen发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461286
求助须知:如何正确求助?哪些是违规求助? 3054997
关于积分的说明 9046106
捐赠科研通 2744930
什么是DOI,文献DOI怎么找? 1505743
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264