DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images

计算机科学 人工智能 糖尿病性视网膜病变 分级(工程) 生成对抗网络 眼底(子宫) 分割 模式识别(心理学) 概化理论 深度学习 计算机视觉 眼科 医学 数学 糖尿病 土木工程 工程类 内分泌学 统计
作者
Yi Zhou,Boyang Wang,Xiaodong He,Shanshan Cui,Ling Shao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 56-66 被引量:114
标识
DOI:10.1109/jbhi.2020.3045475
摘要

Diabetic retinopathy (DR) is a complication of diabetes that severely affects eyes. It can be graded into five levels of severity according to international protocol. However, optimizing a grading model to have strong generalizability requires a large amount of balanced training data, which is difficult to collect, particularly for the high severity levels. Typical data augmentation methods, including random flipping and rotation, cannot generate data with high diversity. In this paper, we propose a diabetic retinopathy generative adversarial network (DR-GAN) to synthesize high-resolution fundus images which can be manipulated with arbitrary grading and lesion information. Thus, large-scale generated data can be used for more meaningful augmentation to train a DR grading and lesion segmentation model. The proposed retina generator is conditioned on the structural and lesion masks, as well as adaptive grading vectors sampled from the latent grading space, which can be adopted to control the synthesized grading severity. Moreover, a multi-scale spatial and channel attention module is devised to improve the generation ability to synthesize small details. Multi-scale discriminators are designed to operate from large to small receptive fields, and joint adversarial losses are adopted to optimize the whole network in an end-to-end manner. With extensive experiments evaluated on the EyePACS dataset connected to Kaggle, as well as the FGADR dataset, we validate the effectiveness of our method, which can both synthesize highly realistic ( 1280 ×1280) controllable fundus images and contribute to the DR grading task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MissZhang发布了新的文献求助10
1秒前
Lzy发布了新的文献求助10
1秒前
1秒前
大宝儿完成签到,获得积分10
2秒前
3秒前
大模型应助蜡笔小新采纳,获得10
3秒前
Re发布了新的文献求助10
3秒前
4秒前
wswswsws发布了新的文献求助30
5秒前
Wang发布了新的文献求助10
6秒前
6秒前
啵啵完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
林西雨发布了新的文献求助10
7秒前
李昊隆完成签到,获得积分20
7秒前
Chelsea完成签到,获得积分10
8秒前
8秒前
9秒前
刘西西发布了新的文献求助10
10秒前
rr发布了新的文献求助20
10秒前
科学修仙完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
超级欧皇的好宝宝完成签到 ,获得积分10
11秒前
yydd发布了新的文献求助10
11秒前
12秒前
wu发布了新的文献求助10
12秒前
13秒前
科学修仙发布了新的文献求助10
13秒前
SciGPT应助清脆雪糕采纳,获得10
14秒前
所所应助ceeray23采纳,获得20
14秒前
方賢完成签到,获得积分10
16秒前
一颗葡萄完成签到 ,获得积分10
16秒前
打打应助李博士采纳,获得30
17秒前
陈琛发布了新的文献求助10
17秒前
冰糖葫芦完成签到,获得积分20
17秒前
Fa发布了新的文献求助10
18秒前
摸鱼鱼发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521532
求助须知:如何正确求助?哪些是违规求助? 4612912
关于积分的说明 14536179
捐赠科研通 4550391
什么是DOI,文献DOI怎么找? 2493651
邀请新用户注册赠送积分活动 1474803
关于科研通互助平台的介绍 1446222