3D Trajectory Planning for Real-Time Image Acquisition in UAV-Assisted VR

计算机科学 水准点(测量) 弹道 能源消耗 灵活性(工程) 实时计算 任务(项目管理) 人工智能 图像(数学) 最优化问题 计算机视觉 算法 生态学 统计 物理 数学 管理 大地测量学 天文 经济 生物 地理
作者
Xiao-Wei Tang,Yi Huang,Yunmei Shi,Xin-Lin Huang,Qingjiang Shi
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 16-30 被引量:2
标识
DOI:10.1109/twc.2023.3274571
摘要

Nowadays, unmanned aerial vehicles (UAVs), empowered with the capability of high-definition image transmission, are used to capture the rapidly changing physical environment by leveraging its high flexibility to reconstruct an immersive realistic virtual environment for metaverse users. In this paper, we consider a novel UAV-assisted image acquisition system where a UAV is dispatched to take off from an initial location to capture real-time images of multiple ground targets and then transfer the captured images back to the ground user for virtual environment reconstruction. We aim to minimize the time for the UAV to complete the image acquisition task by optimizing the three-dimensional UAV trajectory under the constraints of image quality, information causality and energy consumption. To this end, we first formulate the investigated scenario into a mixed integer optimization problem, which, however, is difficult to solve due to the infinite time-varying variables closely coupled with each other. Then, a three-stage progressive algorithm is proposed to obtain an efficient solution to the formulated mixed integer optimization problem, where the constraints of image quality, information causality and energy consumption can be sequentially satisfied. Finally, comprehensive performance evaluation is conducted to verify the effectiveness of the proposed three-stage progressive trajectory design algorithm, and the results show that the proposed algorithm significantly outperforms the benchmark schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超chao完成签到,获得积分10
2秒前
2秒前
SciGPT应助坚强枫采纳,获得10
2秒前
激情的歌曲完成签到,获得积分20
2秒前
NexusExplorer应助zyl采纳,获得10
3秒前
3秒前
loststar发布了新的文献求助10
4秒前
121完成签到,获得积分10
5秒前
YXYWZMSZ完成签到,获得积分10
5秒前
ksxx发布了新的文献求助10
5秒前
瓜子发布了新的文献求助10
6秒前
HCLonely应助激情的歌曲采纳,获得10
6秒前
8秒前
星辰大海应助kehan采纳,获得10
9秒前
9秒前
9秒前
一一应助Quitter采纳,获得20
9秒前
10秒前
任乐乐发布了新的文献求助10
10秒前
linus完成签到,获得积分10
11秒前
000发布了新的文献求助10
11秒前
海儿的小宝贝完成签到,获得积分10
11秒前
珥多完成签到 ,获得积分20
13秒前
脑洞疼应助Aki_27采纳,获得30
13秒前
13秒前
李建科完成签到,获得积分10
14秒前
CADD_Kelvin发布了新的文献求助10
14秒前
14秒前
LinLi发布了新的文献求助10
15秒前
16秒前
16秒前
劲秉应助无语啦采纳,获得10
16秒前
大白发布了新的文献求助10
17秒前
18秒前
玉米完成签到 ,获得积分10
18秒前
JamesPei应助zhangyuan采纳,获得10
19秒前
19秒前
20秒前
000完成签到,获得积分10
20秒前
21秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206294
求助须知:如何正确求助?哪些是违规求助? 2855803
关于积分的说明 8101018
捐赠科研通 2520760
什么是DOI,文献DOI怎么找? 1353799
科研通“疑难数据库(出版商)”最低求助积分说明 641841
邀请新用户注册赠送积分活动 612935