Disruptive coefficient and 2-step disruptive coefficient: Novel measures for identifying vital nodes in complex networks

水准点(测量) 计算机科学 页面排名 排名(信息检索) 复杂网络 鉴定(生物学) 索引(排版) 数据挖掘 理论计算机科学 人工智能 大地测量学 植物 生物 万维网 地理
作者
Alex J. Yang,Sanhong Deng,Hao Wang,Yiqin Zhang,Wenxia Yang
出处
期刊:Journal of Informetrics [Elsevier BV]
卷期号:17 (3): 101411-101411 被引量:18
标识
DOI:10.1016/j.joi.2023.101411
摘要

The identification and ranking of vital nodes in complex networks have been a critical issue for a long time. In this paper, we present an extension of existing disruptive metrics and introduce new ones, namely the disruptive coefficient (D) and 2-step disruptive coefficient (2-step D), as innovative tools for identifying critical nodes in complex networks. Our approach emphasizes the importance of disruptiveness in characterizing nodes within the network and detecting their criticality. Our new measures take into account both prior and posterior information of the focal nodes, by evaluating their ability to disrupt the previous network paradigm, setting them apart from traditional measures. We conduct an empirical analysis of four real-world networks to compare the rankings or identification of nodes using D and 2stepD with those obtained from four renowned benchmark measures, namely, degree, h-index, PageRank, and the CD index. Our analysis reveals significant differences between the nodes identified by D and 2stepD and those identified by the benchmark measures. We also examine the correlation coefficient and efficiency of the metrics and find that D and 2stepD have significant correlations with the CD index, but have weak correlations with the benchmark measures. Furthermore, we show that D and 2stepD outperform CD index and random ways in intentional attacks. We find power law distributions for D, 2stepD, and CD, indicating a small number of highly disruptive nodes and a large number of less disruptive nodes in the networks. Our results suggest that D and 2stepD are capable of providing valuable and distinct insights for identifying critical nodes in complex networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助优美寒荷采纳,获得10
刚刚
大模型应助阿尔宙斯采纳,获得10
刚刚
2秒前
我不看月亮完成签到,获得积分20
2秒前
共享精神应助糟糕的绮露采纳,获得10
2秒前
一心完成签到,获得积分10
4秒前
fmh完成签到,获得积分10
4秒前
5秒前
HuangJunfei完成签到 ,获得积分10
5秒前
慕青应助我马上到采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
xzn1123应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助油炸丸子采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
xzn1123应助科研通管家采纳,获得10
7秒前
wxyshare应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
xzn1123应助科研通管家采纳,获得10
7秒前
7秒前
luye完成签到,获得积分10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
菠菜应助科研通管家采纳,获得150
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
Lee完成签到,获得积分10
8秒前
领导范儿应助科研通管家采纳,获得30
8秒前
Hello应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360485
求助须知:如何正确求助?哪些是违规求助? 4491088
关于积分的说明 13981391
捐赠科研通 4393724
什么是DOI,文献DOI怎么找? 2413597
邀请新用户注册赠送积分活动 1406430
关于科研通互助平台的介绍 1380915