Disruptive coefficient and 2-step disruptive coefficient: Novel measures for identifying vital nodes in complex networks

水准点(测量) 计算机科学 页面排名 排名(信息检索) 复杂网络 鉴定(生物学) 索引(排版) 数据挖掘 理论计算机科学 人工智能 大地测量学 植物 生物 万维网 地理
作者
Alex J. Yang,Sanhong Deng,Hao Wang,Yiqin Zhang,Jing Wang
出处
期刊:Journal of Informetrics [Elsevier]
卷期号:17 (3): 101411-101411 被引量:14
标识
DOI:10.1016/j.joi.2023.101411
摘要

The identification and ranking of vital nodes in complex networks have been a critical issue for a long time. In this paper, we present an extension of existing disruptive metrics and introduce new ones, namely the disruptive coefficient (D) and 2-step disruptive coefficient (2-step D), as innovative tools for identifying critical nodes in complex networks. Our approach emphasizes the importance of disruptiveness in characterizing nodes within the network and detecting their criticality. Our new measures take into account both prior and posterior information of the focal nodes, by evaluating their ability to disrupt the previous network paradigm, setting them apart from traditional measures. We conduct an empirical analysis of four real-world networks to compare the rankings or identification of nodes using D and 2stepD with those obtained from four renowned benchmark measures, namely, degree, h-index, PageRank, and the CD index. Our analysis reveals significant differences between the nodes identified by D and 2stepD and those identified by the benchmark measures. We also examine the correlation coefficient and efficiency of the metrics and find that D and 2stepD have significant correlations with the CD index, but have weak correlations with the benchmark measures. Furthermore, we show that D and 2stepD outperform CD index and random ways in intentional attacks. We find power law distributions for D, 2stepD, and CD, indicating a small number of highly disruptive nodes and a large number of less disruptive nodes in the networks. Our results suggest that D and 2stepD are capable of providing valuable and distinct insights for identifying critical nodes in complex networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Lucas应助娇气的友易采纳,获得10
1秒前
贰鸟应助Soleil采纳,获得20
1秒前
艾卡完成签到 ,获得积分10
1秒前
1秒前
想发sci发布了新的文献求助10
1秒前
jie完成签到,获得积分10
2秒前
美好乐松应助Lermta采纳,获得10
3秒前
3秒前
秃头叶青青完成签到,获得积分10
3秒前
3秒前
4秒前
赵子轩发布了新的文献求助10
4秒前
加油小李完成签到 ,获得积分10
5秒前
NexusExplorer应助M张采纳,获得30
5秒前
5秒前
传奇3应助超帅的怡采纳,获得10
5秒前
6秒前
6秒前
jj发布了新的文献求助10
6秒前
zzz完成签到 ,获得积分10
6秒前
wuwuwu1wu发布了新的文献求助10
7秒前
7秒前
张辉发布了新的文献求助10
7秒前
SciGPT应助forever采纳,获得10
8秒前
想发sci完成签到,获得积分10
8秒前
欢乐的兔子完成签到,获得积分10
8秒前
学术拉机完成签到,获得积分10
8秒前
9秒前
陈奕迅的小老婆完成签到 ,获得积分10
9秒前
Akim应助玛尼采纳,获得10
10秒前
活力的镜子完成签到,获得积分10
10秒前
10秒前
11秒前
时光发布了新的文献求助10
11秒前
萌萌完成签到,获得积分10
11秒前
大胆的弼发布了新的文献求助10
12秒前
年鱼精完成签到 ,获得积分10
12秒前
HBXAurora发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813