Disruptive coefficient and 2-step disruptive coefficient: Novel measures for identifying vital nodes in complex networks

水准点(测量) 计算机科学 页面排名 排名(信息检索) 复杂网络 鉴定(生物学) 索引(排版) 数据挖掘 理论计算机科学 人工智能 大地测量学 植物 生物 万维网 地理
作者
Alex J. Yang,Sanhong Deng,Hao Wang,Yiqin Zhang,Wenxia Yang
出处
期刊:Journal of Informetrics [Elsevier]
卷期号:17 (3): 101411-101411 被引量:18
标识
DOI:10.1016/j.joi.2023.101411
摘要

The identification and ranking of vital nodes in complex networks have been a critical issue for a long time. In this paper, we present an extension of existing disruptive metrics and introduce new ones, namely the disruptive coefficient (D) and 2-step disruptive coefficient (2-step D), as innovative tools for identifying critical nodes in complex networks. Our approach emphasizes the importance of disruptiveness in characterizing nodes within the network and detecting their criticality. Our new measures take into account both prior and posterior information of the focal nodes, by evaluating their ability to disrupt the previous network paradigm, setting them apart from traditional measures. We conduct an empirical analysis of four real-world networks to compare the rankings or identification of nodes using D and 2stepD with those obtained from four renowned benchmark measures, namely, degree, h-index, PageRank, and the CD index. Our analysis reveals significant differences between the nodes identified by D and 2stepD and those identified by the benchmark measures. We also examine the correlation coefficient and efficiency of the metrics and find that D and 2stepD have significant correlations with the CD index, but have weak correlations with the benchmark measures. Furthermore, we show that D and 2stepD outperform CD index and random ways in intentional attacks. We find power law distributions for D, 2stepD, and CD, indicating a small number of highly disruptive nodes and a large number of less disruptive nodes in the networks. Our results suggest that D and 2stepD are capable of providing valuable and distinct insights for identifying critical nodes in complex networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
阔叶材完成签到,获得积分10
刚刚
choichoi发布了新的文献求助10
1秒前
ddxxtt完成签到,获得积分10
1秒前
爆米花应助sun采纳,获得10
2秒前
2秒前
2秒前
liwei发布了新的文献求助10
2秒前
云子完成签到,获得积分10
3秒前
大聪明发布了新的文献求助10
3秒前
yuliuism应助快乐的凡阳采纳,获得10
3秒前
爆米花应助FeifeiWang采纳,获得10
5秒前
5秒前
年禹发布了新的文献求助10
5秒前
达不溜完成签到,获得积分10
6秒前
搜集达人应助亮亮来咯采纳,获得10
6秒前
李昕123发布了新的文献求助10
6秒前
热心市民小红花应助fts213采纳,获得10
6秒前
Gran完成签到,获得积分10
7秒前
LKX完成签到,获得积分10
7秒前
十一完成签到 ,获得积分10
7秒前
8秒前
9秒前
六六应助无情的凌雪采纳,获得10
10秒前
11秒前
11秒前
吴悦完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
子木李完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
风中冰香应助buchun采纳,获得10
14秒前
今后应助研友_LOoaQL采纳,获得10
14秒前
young发布了新的文献求助10
14秒前
科研顺利666完成签到 ,获得积分10
15秒前
15秒前
亮亮来咯完成签到,获得积分10
15秒前
15秒前
星辰大海应助zhoudada采纳,获得10
16秒前
B站萧亚轩完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5491562
求助须知:如何正确求助?哪些是违规求助? 4590068
关于积分的说明 14428695
捐赠科研通 4522306
什么是DOI,文献DOI怎么找? 2477856
邀请新用户注册赠送积分活动 1462948
关于科研通互助平台的介绍 1435627