Disruptive coefficient and 2-step disruptive coefficient: Novel measures for identifying vital nodes in complex networks

水准点(测量) 计算机科学 页面排名 排名(信息检索) 复杂网络 鉴定(生物学) 索引(排版) 数据挖掘 理论计算机科学 人工智能 植物 大地测量学 生物 地理 万维网
作者
Alex J. Yang,Sanhong Deng,Hao Wang,Yiqin Zhang,Wenxia Yang
出处
期刊:Journal of Informetrics [Elsevier BV]
卷期号:17 (3): 101411-101411 被引量:18
标识
DOI:10.1016/j.joi.2023.101411
摘要

The identification and ranking of vital nodes in complex networks have been a critical issue for a long time. In this paper, we present an extension of existing disruptive metrics and introduce new ones, namely the disruptive coefficient (D) and 2-step disruptive coefficient (2-step D), as innovative tools for identifying critical nodes in complex networks. Our approach emphasizes the importance of disruptiveness in characterizing nodes within the network and detecting their criticality. Our new measures take into account both prior and posterior information of the focal nodes, by evaluating their ability to disrupt the previous network paradigm, setting them apart from traditional measures. We conduct an empirical analysis of four real-world networks to compare the rankings or identification of nodes using D and 2stepD with those obtained from four renowned benchmark measures, namely, degree, h-index, PageRank, and the CD index. Our analysis reveals significant differences between the nodes identified by D and 2stepD and those identified by the benchmark measures. We also examine the correlation coefficient and efficiency of the metrics and find that D and 2stepD have significant correlations with the CD index, but have weak correlations with the benchmark measures. Furthermore, we show that D and 2stepD outperform CD index and random ways in intentional attacks. We find power law distributions for D, 2stepD, and CD, indicating a small number of highly disruptive nodes and a large number of less disruptive nodes in the networks. Our results suggest that D and 2stepD are capable of providing valuable and distinct insights for identifying critical nodes in complex networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山260完成签到 ,获得积分10
刚刚
刚刚
打打应助冷傲的水儿采纳,获得10
1秒前
旺旺小仙贝完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
2秒前
芒果好高完成签到,获得积分10
2秒前
3秒前
大个应助Goodenough采纳,获得10
3秒前
wanci应助时安采纳,获得10
4秒前
包钰韬发布了新的文献求助20
4秒前
无略完成签到,获得积分10
4秒前
阿牛完成签到,获得积分10
5秒前
wdy111举报小海狸求助涉嫌违规
6秒前
Star1983发布了新的文献求助10
7秒前
7秒前
大模型应助哇哦采纳,获得10
8秒前
郝好月完成签到,获得积分10
8秒前
mc1220完成签到,获得积分10
8秒前
神勇的晟睿完成签到 ,获得积分10
8秒前
奥特超曼应助LuLan0401采纳,获得10
10秒前
quan发布了新的文献求助10
10秒前
jailbreaker完成签到 ,获得积分0
10秒前
10秒前
彭于彦祖应助田果采纳,获得50
11秒前
马不停蹄完成签到,获得积分10
11秒前
共享精神应助精明一寡采纳,获得10
12秒前
第一步完成签到 ,获得积分10
12秒前
Lin关闭了Lin文献求助
13秒前
赘婿应助封妖妖采纳,获得10
13秒前
Thing完成签到,获得积分10
13秒前
13秒前
qqqq发布了新的文献求助10
13秒前
大方忆秋完成签到 ,获得积分10
13秒前
冷酷严青发布了新的文献求助10
14秒前
liu发布了新的文献求助10
15秒前
小鱼完成签到,获得积分10
16秒前
毕不了业的凡阿哥完成签到,获得积分10
16秒前
Christine_发布了新的文献求助10
16秒前
moodys完成签到,获得积分10
16秒前
冷傲的水儿完成签到,获得积分20
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582