亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FANet: An Arbitrary Direction Remote Sensing Object Detection Network Based on Feature Fusion and Angle Classification

计算机科学 目标检测 特征(语言学) 人工智能 棱锥(几何) 最小边界框 帧(网络) 特征提取 计算机视觉 方向(向量空间) 模式识别(心理学) 遥感 图像(数学) 数学 电信 地质学 哲学 语言学 几何学
作者
Yunzuo Zhang,Wei Guo,Cunyu Wu,Wei Li,Ran Tao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:22
标识
DOI:10.1109/tgrs.2023.3273354
摘要

High-precision remote sensing image object detection has broad application prospects in military defense, disaster emergency, urban planning, and other fields. However, the arbitrary orientation, dense arrangement, and small size of objects in remote sensing images lead to poor detection accuracy of existing methods. To achieve accurate detection, this paper proposes an arbitrary directional remote sensing object detection method, called FANet, based on feature fusion and angle classification. Initially, the angle prediction branch is introduced, and the circular smooth label method is used to transform the angle regression problem into a classification problem, which solves the difficult problem of abrupt changes in the boundaries of the rotating frame while realizing the object frame rotation. Subsequently, to extract robust remote sensing objects, innovative introduce pure convolutional model as a backbone network, while Conv is replaced by GSConv to reduce the number of parameters in the model along with ensuring detection accuracy. Finally, the strengthen connection feature pyramid network (SC-FPN) is proposed to redesign the lateral connection part for deep and shallow layer feature fusion, and add jump connections between the input and output of the same level feature map to enrich the feature semantic information. In addition, add a variable parameter to the original localization loss function to satisfy the bounding box regression accuracy under different IoU thresholds, and thus obtain more accurate object detection. The comprehensive experimental results on two public datasets for rotated object detection DOTA and HRSC2016 demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨人龙发布了新的文献求助10
刚刚
CMUSK完成签到 ,获得积分10
1秒前
1111颂完成签到,获得积分10
2秒前
5秒前
784273145发布了新的文献求助100
6秒前
xiuxiu完成签到 ,获得积分10
7秒前
9秒前
gaijiaofanv发布了新的文献求助10
9秒前
标致的问晴完成签到,获得积分10
10秒前
11秒前
慕青应助皮蛋瘦肉粥采纳,获得10
12秒前
隐形曼青应助笨笨人龙采纳,获得10
14秒前
超级的千青完成签到 ,获得积分10
19秒前
小天完成签到,获得积分10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
ding应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
疯狂的冷荷完成签到,获得积分20
22秒前
24秒前
24秒前
25秒前
yoonkk完成签到,获得积分10
26秒前
29秒前
Walwyn完成签到 ,获得积分10
30秒前
Aintzane完成签到 ,获得积分10
35秒前
38秒前
gaijiaofanv发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
40秒前
42秒前
45秒前
45秒前
疯狂的冷荷关注了科研通微信公众号
45秒前
AX完成签到,获得积分10
46秒前
坚定服饰完成签到 ,获得积分10
47秒前
易岩发布了新的文献求助30
50秒前
hodi完成签到,获得积分10
54秒前
drjyang完成签到,获得积分10
1分钟前
AZN完成签到,获得积分10
1分钟前
1816013153发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482214
求助须知:如何正确求助?哪些是违规求助? 4583139
关于积分的说明 14388632
捐赠科研通 4512124
什么是DOI,文献DOI怎么找? 2472687
邀请新用户注册赠送积分活动 1458975
关于科研通互助平台的介绍 1432328