FANet: An Arbitrary Direction Remote Sensing Object Detection Network Based on Feature Fusion and Angle Classification

计算机科学 目标检测 特征(语言学) 人工智能 棱锥(几何) 最小边界框 帧(网络) 特征提取 计算机视觉 方向(向量空间) 模式识别(心理学) 遥感 图像(数学) 数学 电信 地质学 哲学 语言学 几何学
作者
Yunzuo Zhang,Wei Guo,Cunyu Wu,Wei Li,Ran Tao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:10
标识
DOI:10.1109/tgrs.2023.3273354
摘要

High-precision remote sensing image object detection has broad application prospects in military defense, disaster emergency, urban planning, and other fields. However, the arbitrary orientation, dense arrangement, and small size of objects in remote sensing images lead to poor detection accuracy of existing methods. To achieve accurate detection, this paper proposes an arbitrary directional remote sensing object detection method, called FANet, based on feature fusion and angle classification. Initially, the angle prediction branch is introduced, and the circular smooth label method is used to transform the angle regression problem into a classification problem, which solves the difficult problem of abrupt changes in the boundaries of the rotating frame while realizing the object frame rotation. Subsequently, to extract robust remote sensing objects, innovative introduce pure convolutional model as a backbone network, while Conv is replaced by GSConv to reduce the number of parameters in the model along with ensuring detection accuracy. Finally, the strengthen connection feature pyramid network (SC-FPN) is proposed to redesign the lateral connection part for deep and shallow layer feature fusion, and add jump connections between the input and output of the same level feature map to enrich the feature semantic information. In addition, add a variable parameter to the original localization loss function to satisfy the bounding box regression accuracy under different IoU thresholds, and thus obtain more accurate object detection. The comprehensive experimental results on two public datasets for rotated object detection DOTA and HRSC2016 demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗橙子完成签到,获得积分10
刚刚
洋子发布了新的文献求助10
2秒前
4秒前
Chai发布了新的文献求助30
5秒前
小仙女发布了新的文献求助10
6秒前
77kk完成签到,获得积分10
7秒前
7秒前
8秒前
知足常乐发布了新的文献求助10
10秒前
安静初雪发布了新的文献求助10
10秒前
15秒前
老迟到的钢铁侠完成签到,获得积分10
16秒前
16秒前
18秒前
Han发布了新的文献求助20
20秒前
20秒前
拼搏向上发布了新的文献求助100
21秒前
HCLonely应助安静初雪采纳,获得10
22秒前
22秒前
你好呀发布了新的文献求助10
25秒前
25秒前
香菜兔子完成签到,获得积分10
26秒前
部川苦茶发布了新的文献求助10
26秒前
28秒前
WWXWWX发布了新的文献求助10
30秒前
科研通AI2S应助chichenglin采纳,获得10
30秒前
烂烂完成签到,获得积分10
30秒前
李健的小迷弟应助耶耶采纳,获得10
32秒前
共享精神应助tutu采纳,获得10
33秒前
传奇3应助WWXWWX采纳,获得10
33秒前
梁梁梁发布了新的文献求助10
35秒前
36秒前
知足常乐完成签到 ,获得积分10
36秒前
然大宝完成签到,获得积分10
41秒前
41秒前
hbpu230701完成签到,获得积分10
41秒前
41秒前
42秒前
43秒前
44秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206745
求助须知:如何正确求助?哪些是违规求助? 2856198
关于积分的说明 8102939
捐赠科研通 2521287
什么是DOI,文献DOI怎么找? 1354335
科研通“疑难数据库(出版商)”最低求助积分说明 642012
邀请新用户注册赠送积分活动 613207