FANet: An Arbitrary Direction Remote Sensing Object Detection Network Based on Feature Fusion and Angle Classification

计算机科学 目标检测 特征(语言学) 人工智能 棱锥(几何) 最小边界框 帧(网络) 特征提取 计算机视觉 方向(向量空间) 模式识别(心理学) 遥感 图像(数学) 数学 电信 地质学 哲学 语言学 几何学
作者
Yunzuo Zhang,Wei Guo,Cunyu Wu,Wei Li,Ran Tao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:10
标识
DOI:10.1109/tgrs.2023.3273354
摘要

High-precision remote sensing image object detection has broad application prospects in military defense, disaster emergency, urban planning, and other fields. However, the arbitrary orientation, dense arrangement, and small size of objects in remote sensing images lead to poor detection accuracy of existing methods. To achieve accurate detection, this paper proposes an arbitrary directional remote sensing object detection method, called FANet, based on feature fusion and angle classification. Initially, the angle prediction branch is introduced, and the circular smooth label method is used to transform the angle regression problem into a classification problem, which solves the difficult problem of abrupt changes in the boundaries of the rotating frame while realizing the object frame rotation. Subsequently, to extract robust remote sensing objects, innovative introduce pure convolutional model as a backbone network, while Conv is replaced by GSConv to reduce the number of parameters in the model along with ensuring detection accuracy. Finally, the strengthen connection feature pyramid network (SC-FPN) is proposed to redesign the lateral connection part for deep and shallow layer feature fusion, and add jump connections between the input and output of the same level feature map to enrich the feature semantic information. In addition, add a variable parameter to the original localization loss function to satisfy the bounding box regression accuracy under different IoU thresholds, and thus obtain more accurate object detection. The comprehensive experimental results on two public datasets for rotated object detection DOTA and HRSC2016 demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小梁发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
木子刈完成签到,获得积分10
1秒前
1秒前
estrale发布了新的文献求助30
2秒前
科目三应助Jeannie采纳,获得10
2秒前
整齐发箍完成签到,获得积分10
3秒前
young_lifestyle应助彬墩墩采纳,获得10
3秒前
3秒前
3秒前
尊敬莺发布了新的文献求助30
4秒前
尔沁发布了新的文献求助10
4秒前
ihtw发布了新的文献求助10
5秒前
小谢不谢完成签到,获得积分10
5秒前
6秒前
mouxq完成签到,获得积分10
6秒前
6秒前
个性的绝义完成签到,获得积分10
6秒前
明理的踏歌完成签到,获得积分10
6秒前
曾会锋发布了新的文献求助10
7秒前
花开富贵发布了新的文献求助10
7秒前
康轲发布了新的文献求助10
7秒前
8秒前
CodeCraft应助笨笨含羞草采纳,获得10
8秒前
jkaaa完成签到,获得积分10
8秒前
小谢不谢发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
李健的小迷弟应助范范采纳,获得10
9秒前
汉堡包应助乐观的凌兰采纳,获得10
10秒前
寻梦完成签到 ,获得积分10
10秒前
鹏鹏完成签到,获得积分10
10秒前
hhhhcc_完成签到 ,获得积分10
10秒前
化学发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609