FANet: An Arbitrary Direction Remote Sensing Object Detection Network Based on Feature Fusion and Angle Classification

计算机科学 目标检测 特征(语言学) 人工智能 棱锥(几何) 最小边界框 帧(网络) 特征提取 计算机视觉 方向(向量空间) 模式识别(心理学) 遥感 图像(数学) 数学 电信 地质学 哲学 语言学 几何学
作者
Yunzuo Zhang,Wei Guo,Cunyu Wu,Wei Li,Ran Tao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:22
标识
DOI:10.1109/tgrs.2023.3273354
摘要

High-precision remote sensing image object detection has broad application prospects in military defense, disaster emergency, urban planning, and other fields. However, the arbitrary orientation, dense arrangement, and small size of objects in remote sensing images lead to poor detection accuracy of existing methods. To achieve accurate detection, this paper proposes an arbitrary directional remote sensing object detection method, called FANet, based on feature fusion and angle classification. Initially, the angle prediction branch is introduced, and the circular smooth label method is used to transform the angle regression problem into a classification problem, which solves the difficult problem of abrupt changes in the boundaries of the rotating frame while realizing the object frame rotation. Subsequently, to extract robust remote sensing objects, innovative introduce pure convolutional model as a backbone network, while Conv is replaced by GSConv to reduce the number of parameters in the model along with ensuring detection accuracy. Finally, the strengthen connection feature pyramid network (SC-FPN) is proposed to redesign the lateral connection part for deep and shallow layer feature fusion, and add jump connections between the input and output of the same level feature map to enrich the feature semantic information. In addition, add a variable parameter to the original localization loss function to satisfy the bounding box regression accuracy under different IoU thresholds, and thus obtain more accurate object detection. The comprehensive experimental results on two public datasets for rotated object detection DOTA and HRSC2016 demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoruixue完成签到,获得积分10
2秒前
11号迪西馅饼完成签到,获得积分10
3秒前
不会搞科研完成签到,获得积分0
5秒前
小马甲应助PPD采纳,获得30
6秒前
天天快乐应助PPD采纳,获得30
6秒前
Hello应助PPD采纳,获得10
6秒前
脑洞疼应助PPD采纳,获得10
6秒前
爆米花应助PPD采纳,获得10
6秒前
桐桐应助PPD采纳,获得30
6秒前
李健的粉丝团团长应助PPD采纳,获得10
6秒前
丘比特应助PPD采纳,获得10
6秒前
隐形曼青应助PPD采纳,获得10
6秒前
正己化人应助PPD采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
周周完成签到 ,获得积分10
9秒前
11完成签到,获得积分10
10秒前
浩浩完成签到 ,获得积分10
10秒前
乔滴滴完成签到 ,获得积分10
12秒前
青桔完成签到,获得积分10
12秒前
13秒前
研友_O8Wz4Z完成签到,获得积分10
14秒前
懵懂的小甜瓜关注了科研通微信公众号
15秒前
小王同学完成签到,获得积分10
16秒前
风清扬应助科研通管家采纳,获得150
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得150
17秒前
传奇3应助科研通管家采纳,获得50
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
22秒前
fangqian0000完成签到,获得积分10
23秒前
111完成签到,获得积分10
23秒前
祝你勇敢完成签到 ,获得积分10
23秒前
m1saka完成签到 ,获得积分10
24秒前
望星空完成签到 ,获得积分10
27秒前
若枫完成签到,获得积分10
28秒前
elsa嘻嘻完成签到 ,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066805
求助须知:如何正确求助?哪些是违规求助? 4288731
关于积分的说明 13360444
捐赠科研通 4108126
什么是DOI,文献DOI怎么找? 2249514
邀请新用户注册赠送积分活动 1254960
关于科研通互助平台的介绍 1187429