FANet: An Arbitrary Direction Remote Sensing Object Detection Network Based on Feature Fusion and Angle Classification

计算机科学 目标检测 特征(语言学) 人工智能 棱锥(几何) 最小边界框 帧(网络) 特征提取 计算机视觉 方向(向量空间) 模式识别(心理学) 遥感 图像(数学) 数学 电信 地质学 哲学 语言学 几何学
作者
Yunzuo Zhang,Wei Guo,Cunyu Wu,Wei Li,Ran Tao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:10
标识
DOI:10.1109/tgrs.2023.3273354
摘要

High-precision remote sensing image object detection has broad application prospects in military defense, disaster emergency, urban planning, and other fields. However, the arbitrary orientation, dense arrangement, and small size of objects in remote sensing images lead to poor detection accuracy of existing methods. To achieve accurate detection, this paper proposes an arbitrary directional remote sensing object detection method, called FANet, based on feature fusion and angle classification. Initially, the angle prediction branch is introduced, and the circular smooth label method is used to transform the angle regression problem into a classification problem, which solves the difficult problem of abrupt changes in the boundaries of the rotating frame while realizing the object frame rotation. Subsequently, to extract robust remote sensing objects, innovative introduce pure convolutional model as a backbone network, while Conv is replaced by GSConv to reduce the number of parameters in the model along with ensuring detection accuracy. Finally, the strengthen connection feature pyramid network (SC-FPN) is proposed to redesign the lateral connection part for deep and shallow layer feature fusion, and add jump connections between the input and output of the same level feature map to enrich the feature semantic information. In addition, add a variable parameter to the original localization loss function to satisfy the bounding box regression accuracy under different IoU thresholds, and thus obtain more accurate object detection. The comprehensive experimental results on two public datasets for rotated object detection DOTA and HRSC2016 demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Quzhengkai发布了新的文献求助10
1秒前
1秒前
2秒前
落寞晓灵完成签到,获得积分10
2秒前
ORAzzz应助翠翠采纳,获得20
3秒前
zoe完成签到,获得积分10
3秒前
习习应助学术小白采纳,获得10
3秒前
4秒前
5秒前
tianny关注了科研通微信公众号
6秒前
6秒前
CO2发布了新的文献求助10
6秒前
桐桐应助zhangscience采纳,获得10
7秒前
求助发布了新的文献求助10
8秒前
buno应助zoe采纳,获得10
9秒前
junzilan发布了新的文献求助10
9秒前
9秒前
细品岁月完成签到 ,获得积分10
9秒前
细心书蕾完成签到 ,获得积分10
10秒前
无花果应助l11x29采纳,获得10
12秒前
12秒前
老詹头发布了新的文献求助10
12秒前
思源应助叫滚滚采纳,获得10
13秒前
14秒前
刘歌完成签到 ,获得积分10
14秒前
阿巡完成签到,获得积分10
14秒前
Chen完成签到,获得积分10
16秒前
LSH970829发布了新的文献求助10
16秒前
哈哈哈完成签到 ,获得积分10
17秒前
汤姆完成签到,获得积分10
17秒前
19秒前
19秒前
翠翠完成签到,获得积分10
20秒前
20秒前
LSH970829完成签到,获得积分10
21秒前
Lyg完成签到,获得积分20
22秒前
坚强的樱发布了新的文献求助10
22秒前
baodingning完成签到,获得积分10
23秒前
23秒前
公茂源发布了新的文献求助30
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808