HSI-DETR: A DETR-based Transfer Learning from RGB to Hyperspectral Images for Object Detection of Live and Dead Cells

高光谱成像 计算机科学 人工智能 计算机视觉 遥感 RGB颜色模型 学习迁移 模式识别(心理学) 地理
作者
Songxin Ye,Nanying Li,Jiaqi Xue,Yaqian Long,Sen Jia
标识
DOI:10.1145/3581807.3581822
摘要

Traditional cell viability judgment methods are invasive and damaging to cells. Moreover, even under a microscope, it is difficult to distinguish live cells from dead cells by the naked eye alone. With the development of optical imaging technology, hyperspectral imaging is more and more widely used in various fields. Hyperspectral imaging is a non-contact optical technique that provides both spectral and spatial information in a single measurement. It becomes a fast, non-invasive option to differentiate between live and dead cells. In recent years, the rapid development of deep learning has provided a better way to distinguish the difference between living and dead cells through a large amount of data. However, it is often necessary to acquire large amounts of labeled data at an expensive cost to train models. This is more difficult to achieve on medical hyperspectral images. Therefore, in this paper, a new model called HSI-DETR is proposed to solve the above problem on the target detection task of live and dead cells, which is based on the detection transformer (DETR) model. The HSI-DETR model suitable for hyperspectral images (HSI) is proposed with minimal modification. Then, some parameters of DETR trained on RGB images are transferred to HSI-DETR trained on hyperspectral images. Compared to the general method, this method can train a better model with a small number of labeled samples. And compared to the DETR-R50, the AP50 of HSI-DETR-R50 has increased by 5.15%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
现代姒完成签到,获得积分10
2秒前
今后应助Eden采纳,获得10
3秒前
丫丫发布了新的文献求助10
3秒前
3秒前
唐少北完成签到,获得积分10
4秒前
4秒前
4秒前
juzipi完成签到,获得积分10
6秒前
o2ptf6完成签到,获得积分10
8秒前
乐乐乐乐乐乐应助打工人采纳,获得10
9秒前
米糊发布了新的文献求助10
9秒前
12秒前
12秒前
朴实以晴给朴实以晴的求助进行了留言
12秒前
14秒前
14秒前
Hello应助皮皮虾采纳,获得10
15秒前
香菜完成签到,获得积分10
15秒前
40873完成签到,获得积分10
16秒前
JJ完成签到 ,获得积分10
16秒前
体面人完成签到,获得积分10
16秒前
Eden发布了新的文献求助10
17秒前
贪玩的半仙完成签到,获得积分10
17秒前
ffz发布了新的文献求助10
17秒前
连衣裙发布了新的文献求助10
18秒前
19秒前
ssdssd完成签到,获得积分10
19秒前
kkvv完成签到 ,获得积分10
19秒前
了晨发布了新的文献求助10
20秒前
HCLonely应助等饭吃磕盐人采纳,获得10
22秒前
雨夜带刀不带伞完成签到,获得积分10
22秒前
mo完成签到,获得积分10
23秒前
shuang完成签到 ,获得积分10
23秒前
buno应助高哈哈哈采纳,获得10
24秒前
24秒前
YY完成签到 ,获得积分10
25秒前
晓晓完成签到,获得积分10
27秒前
情怀应助连衣裙采纳,获得10
29秒前
29秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222582
求助须知:如何正确求助?哪些是违规求助? 2871280
关于积分的说明 8174713
捐赠科研通 2538283
什么是DOI,文献DOI怎么找? 1370395
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619592