Computer especially AI-assisted drug virtual screening and design in traditional Chinese medicine

虚拟筛选 计算机科学 系统回顾 药物发现 梅德林 数据科学 人工智能 医学 生物信息学 化学 生物化学 生物
作者
Yumeng Lin,You Zhang,Dongyang Wang,Bowen Yang,Yingqiang Shen
出处
期刊:Phytomedicine [Elsevier]
卷期号:107: 154481-154481 被引量:42
标识
DOI:10.1016/j.phymed.2022.154481
摘要

Traditional Chinese medicine (TCM), as a significant part of the global pharmaceutical science, the abundant molecular compounds it contains is a valuable potential source of designing and screening new drugs. However, due to the un-estimated quantity of the natural molecular compounds and diversity of the related problems drug discovery such as precise screening of molecular compounds or the evaluation of efficacy, physicochemical properties and pharmacokinetics, it is arduous for researchers to design or screen applicable compounds through old methods. With the rapid development of computer technology recently, especially artificial intelligence (AI), its innovation in the field of virtual screening contributes to an increasing efficiency and accuracy in the process of discovering new drugs.This study systematically reviewed the application of computational approaches and artificial intelligence in drug virtual filtering and devising of TCM and presented the potential perspective of computer-aided TCM development.We made a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Then screening the most typical articles for our research.The systematic review was performed by following the PRISMA guidelines. The databases PubMed, EMBASE, Web of Science, CNKI were used to search for publications that focused on computer-aided drug virtual screening and design in TCM.Totally, 42 corresponding articles were included in literature reviewing. Aforementioned studies were of great significance to the treatment and cost control of many challenging diseases such as COVID-19, diabetes, Alzheimer's Disease (AD), etc. Computational approaches and AI were widely used in virtual screening in the process of TCM advancing, which include structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS). Besides, computational technologies were also extensively applied in absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction of candidate drugs and new drug design in crucial course of drug discovery.The applications of computer and AI play an important role in the drug virtual screening and design in the field of TCM, with huge application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17发布了新的文献求助10
1秒前
gys发布了新的文献求助10
1秒前
英俊的铭应助失眠夏之采纳,获得10
1秒前
2秒前
向聿完成签到,获得积分10
2秒前
3秒前
3秒前
平常的无极完成签到,获得积分20
4秒前
5秒前
6秒前
YUMI发布了新的文献求助10
6秒前
sustwanli发布了新的文献求助10
7秒前
狂野芷卉发布了新的文献求助10
9秒前
yi发布了新的文献求助10
10秒前
小乌龟完成签到 ,获得积分10
12秒前
Paddi发布了新的文献求助10
12秒前
天天快乐应助Aprilapple采纳,获得10
13秒前
研友_VZG7GZ应助wang采纳,获得10
16秒前
16秒前
香蕉觅云应助超级的盼山采纳,获得10
17秒前
Owen应助sustwanli采纳,获得10
17秒前
18秒前
万能图书馆应助HTB采纳,获得10
19秒前
李爱国应助狂野芷卉采纳,获得10
19秒前
桐桐应助Benjamin采纳,获得10
21秒前
汉堡包应助Paddi采纳,获得10
22秒前
不懈奋进应助Jackylee采纳,获得30
22秒前
23秒前
隐形的谷槐完成签到 ,获得积分10
23秒前
椰子发布了新的文献求助10
23秒前
科研通AI5应助sunburst采纳,获得10
24秒前
25秒前
仲天与发布了新的文献求助20
26秒前
钰y完成签到 ,获得积分10
26秒前
科研通AI5应助穆羊青采纳,获得10
26秒前
27秒前
28秒前
28秒前
28秒前
极夜完成签到,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546508
求助须知:如何正确求助?哪些是违规求助? 3123622
关于积分的说明 9356111
捐赠科研通 2822292
什么是DOI,文献DOI怎么找? 1551314
邀请新用户注册赠送积分活动 723303
科研通“疑难数据库(出版商)”最低求助积分说明 713699