Metamaterial based piezoelectric acoustic energy harvesting: Electromechanical coupled modeling and experimental validation

声学 能量收集 压电 材料科学 超材料 物理 功率(物理) 光电子学 量子力学
作者
Hanjie Xiao,Tianrun Li,Liang Zhang,Wei-Hsin Liao,Ting Tan,Zhimiao Yan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:185: 109808-109808 被引量:15
标识
DOI:10.1016/j.ymssp.2022.109808
摘要

Piezoelectric energy harvesting technology utilizing acoustic metamaterials investigated by experiment and simulation improves the sound energy density and conversion efficiency. A fully coupled electromechanical model in both the mechanical and electric domains is crucial for accurate prediction and optimization of acoustic metamaterial based on sound energy harvesting. Based on the Kirchhoff thin plate theory, constitutive laws of isotropic aluminum substrate and transversely isotropic piezoelectric bimorph, the electromechanical coupled governing equation in the mechanical domain is deduced for a two-dimensional acoustic metamaterial based piezoelectric energy harvester. Each piezoelectric layer is represented as a current source in series with its internal capacitance for derivation of the electromechanical coupled governing equation in the electrical domain via Gauss’s law and Kirchhoff’s laws. With generalized boundary conditions, modal analysis is performed using the Galerkin method and Kelvin-Kirchhoff condition. The general transient response and frequency response functions are obtained under the excitation of sound waves and the reaction forces of the silicone rubbers. The time-history, power spectrum and phase portrait of the measured harvested voltage at 90 fixed frequencies agree well with the model predictions. The theoretical maximal harvested power is 3.09 mW, with the optimal resistance of 28180 Ω and inductance of 0.28H connected in parallel. Near the resonant frequency, the utilization rate of converting sound energy into electrical power is maximized. The proposed electromechanical coupled model can be used as a basis for further topology design and optimization and underlying physics for experimental study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzxxxx发布了新的文献求助10
刚刚
斯文败类应助勤劳傲晴采纳,获得10
1秒前
shilong.yang发布了新的文献求助10
1秒前
momo完成签到,获得积分10
2秒前
wxp_bioinfo完成签到,获得积分10
3秒前
3秒前
桐桐应助wangg采纳,获得10
3秒前
Jun完成签到,获得积分10
4秒前
芝士的酒发布了新的文献求助50
4秒前
5秒前
赘婿应助复杂的问玉采纳,获得30
5秒前
6秒前
6秒前
7秒前
端庄白开水完成签到,获得积分10
7秒前
吕春雨发布了新的文献求助10
7秒前
大个应助wxp_bioinfo采纳,获得10
8秒前
yqq完成签到 ,获得积分10
8秒前
9秒前
10秒前
芝士发布了新的文献求助10
10秒前
橘子发布了新的文献求助10
11秒前
11秒前
11秒前
晨曦发布了新的文献求助10
12秒前
12秒前
kobiy完成签到 ,获得积分10
12秒前
wu完成签到 ,获得积分10
13秒前
蛋泥完成签到,获得积分10
13秒前
顾矜应助mingjie采纳,获得10
14秒前
zhaowenxian发布了新的文献求助10
14秒前
勤劳傲晴发布了新的文献求助10
15秒前
15秒前
橘子完成签到,获得积分10
17秒前
可耐的从安完成签到 ,获得积分10
18秒前
zho应助背后的诺言采纳,获得10
18秒前
粥粥完成签到,获得积分10
18秒前
19秒前
打打应助陈杰采纳,获得10
20秒前
充电宝应助柔弱凡松采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794