核酸
重组酶聚合酶扩增
检测点注意事项
检出限
核酸定量
聚合酶链反应
病毒学
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)
冠状病毒
实时聚合酶链反应
化学
2019年冠状病毒病(COVID-19)
分子生物学
生物
生物化学
色谱法
医学
传染病(医学专业)
基因
疾病
免疫学
病理
作者
Xiangqin Meng,Sijia Zou,Dandan Li,Jiuyang He,Ling Fang,Haojue Wang,Xiyun Yan,Demin Duan,Lizeng Gao
标识
DOI:10.1016/j.bios.2022.114739
摘要
The coronavirus disease 2019 (COVID-19) pandemic has created a huge demand for sensitive and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The current gold standard for SARS-CoV-2 detection is reverse transcription-polymerase chain reaction (RT-PCR)-based nucleic acid amplification. However, RT-PCR is time consuming and requires specialists and large instruments that are unattainable for point-of-care testing (POCT). To develop POCT for SARS-CoV-2, we combined recombinase polymerase amplification (RPA) and FeS2 nanozyme strips to achieve facile nucleic acid amplification and subsequent colorimetric signal enhancement based on the high peroxidase-like activity of the FeS2 nanozymes. This method showed a nucleic acid limit of detection (LOD) for SARS-CoV-2 of 200 copies/mL, close to that of RT-PCR. The unique catalytic properties of the FeS2 nanozymes enabled the nanozyme-strip to amplify colorimetric signals via the nontoxic 3,3',5,5'-tetramethylbenzidine (TMB) substrate. Importantly, the detection of clinical samples of human papilloma virus type 16 (HPV-16) showed 100% agreement with previous RT-PCR results, highlighting the versatility and reliability of this method. Our findings suggest that nanozyme-based nucleic acid detection has great potential in the development of POCT diagnosis for COVID-19 and other viral infections.
科研通智能强力驱动
Strongly Powered by AbleSci AI