已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Development of a Prediction Model Based on Random Survival Forest for the Postoperative Prognosis of Pancreatic Cancer: A SEER-Based Study

布里氏评分 随机森林 Lasso(编程语言) 比例危险模型 医学 回归 预测模型 生存分析 回归分析 统计 预测建模 选择(遗传算法) 人工智能 肿瘤科 计算机科学 内科学 机器学习 总体生存率 数学 万维网
作者
Jiaxi Lin,Minyue Yin,Lu Liu,Jingwen Gao,Chenyan Yu,Xiaolin Liu,Chunfang Xu,Jinzhou Zhu
出处
期刊:Cancers [MDPI AG]
卷期号:14 (19): 4667-4667 被引量:17
标识
DOI:10.3390/cancers14194667
摘要

Accurate prediction for the prognosis of patients with pancreatic cancer (PC) is a emerge task nowadays. We aimed to develop survival models for postoperative PC patients, based on a novel algorithm, random survival forest (RSF), traditional Cox regression and neural networks (Deepsurv), using the Surveillance, Epidemiology, and End Results Program (SEER) database. A total of 3988 patients were included in this study. Eight clinicopathological features were selected using least absolute shrinkage and selection operator (LASSO) regression analysis and were utilized to develop the RSF model. The model was evaluated based on three dimensions: discrimination, calibration, and clinical benefit. It found that the RSF model predicted the cancer-specific survival (CSS) of the postoperative PC patients with a c-index of 0.723, which was higher than the models built by Cox regression (0.670) and Deepsurv (0.700). The Brier scores at 1, 3, and 5 years (0.188, 0.177, and 0.131) of the RSF model demonstrated the model's favorable calibration and the decision curve analysis illustrated the model's value of clinical implement. Moreover, the roles of the key variables were visualized in the Shapley Additive Explanations plotting. Lastly, the prediction model demonstrates value in risk stratification and individual prognosis. In this study, a high-performance prediction model for PC postoperative prognosis was developed, based on RSF The model presented significant strengths in the risk stratification and individual prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
kiteWYL完成签到,获得积分10
2秒前
杨诚发布了新的文献求助10
3秒前
4秒前
kongchanjie完成签到,获得积分10
5秒前
orixero应助起风了采纳,获得10
10秒前
脸小呆呆完成签到 ,获得积分10
12秒前
13秒前
14秒前
Astralius完成签到,获得积分10
17秒前
18秒前
the兰发布了新的文献求助10
19秒前
22秒前
23秒前
26秒前
月儿发布了新的文献求助30
27秒前
挽风月完成签到,获得积分10
27秒前
Gallager发布了新的文献求助30
31秒前
小蘑菇应助狗头采纳,获得10
31秒前
Zhmx完成签到,获得积分10
31秒前
自然醒完成签到,获得积分10
33秒前
33秒前
34秒前
Kishi完成签到,获得积分10
38秒前
39秒前
39秒前
穿堂风发布了新的文献求助10
39秒前
www发布了新的文献求助10
40秒前
传奇3应助贾克斯采纳,获得10
40秒前
45秒前
45秒前
万能图书馆应助Gallager采纳,获得10
47秒前
天天快乐应助shanks采纳,获得10
52秒前
一树面包人完成签到 ,获得积分10
53秒前
风趣老四完成签到,获得积分10
53秒前
55秒前
今后应助yansitong采纳,获得10
58秒前
the兰完成签到,获得积分10
59秒前
影子发布了新的文献求助10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154688
求助须知:如何正确求助?哪些是违规求助? 2805501
关于积分的说明 7865044
捐赠科研通 2463690
什么是DOI,文献DOI怎么找? 1311521
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601821