The Development of a Prediction Model Based on Random Survival Forest for the Postoperative Prognosis of Pancreatic Cancer: A SEER-Based Study

布里氏评分 随机森林 Lasso(编程语言) 比例危险模型 医学 回归 预测模型 生存分析 回归分析 统计 预测建模 选择(遗传算法) 人工智能 肿瘤科 计算机科学 内科学 机器学习 总体生存率 数学 万维网
作者
Jiaxi Lin,Minyue Yin,Lu Liu,Jingwen Gao,Chenyan Yu,Xiaolin Liu,Chun‐Fang Xu,Jinzhou Zhu
出处
期刊:Cancers [MDPI AG]
卷期号:14 (19): 4667-4667 被引量:29
标识
DOI:10.3390/cancers14194667
摘要

Accurate prediction for the prognosis of patients with pancreatic cancer (PC) is a emerge task nowadays. We aimed to develop survival models for postoperative PC patients, based on a novel algorithm, random survival forest (RSF), traditional Cox regression and neural networks (Deepsurv), using the Surveillance, Epidemiology, and End Results Program (SEER) database. A total of 3988 patients were included in this study. Eight clinicopathological features were selected using least absolute shrinkage and selection operator (LASSO) regression analysis and were utilized to develop the RSF model. The model was evaluated based on three dimensions: discrimination, calibration, and clinical benefit. It found that the RSF model predicted the cancer-specific survival (CSS) of the postoperative PC patients with a c-index of 0.723, which was higher than the models built by Cox regression (0.670) and Deepsurv (0.700). The Brier scores at 1, 3, and 5 years (0.188, 0.177, and 0.131) of the RSF model demonstrated the model's favorable calibration and the decision curve analysis illustrated the model's value of clinical implement. Moreover, the roles of the key variables were visualized in the Shapley Additive Explanations plotting. Lastly, the prediction model demonstrates value in risk stratification and individual prognosis. In this study, a high-performance prediction model for PC postoperative prognosis was developed, based on RSF The model presented significant strengths in the risk stratification and individual prognosis prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YK完成签到,获得积分10
1秒前
Gauss应助科研通管家采纳,获得20
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
Xinxxx应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Xinxxx应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
大快朵颐发福完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
只争朝夕应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
高大的万恶完成签到,获得积分20
2秒前
浮游应助科研通管家采纳,获得10
2秒前
风趣凝海发布了新的文献求助10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
yao完成签到,获得积分10
2秒前
zzdd应助科研通管家采纳,获得10
2秒前
Xinxxx应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
大模型应助shining采纳,获得30
2秒前
突突突完成签到,获得积分10
3秒前
adobe完成签到,获得积分10
3秒前
随便起个吧完成签到 ,获得积分10
4秒前
爆米花应助笑点低的醉蓝采纳,获得10
5秒前
JamesPei应助晓晓采纳,获得10
5秒前
Mu丶tou发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265