已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Extended depth-of-field infrared imaging with deeply learned wavefront coding

光学 波前 红外线的 物理
作者
Yidan Li,Junhua Wang,Xintong Zhang,Kai Hu,Lu Ye,Minge Gao,Yuxiang Cao,Min Xu
出处
期刊:Optics Express [The Optical Society]
卷期号:30 (22): 40018-40018 被引量:18
标识
DOI:10.1364/oe.471443
摘要

Wavefront coding (WFC) techniques, including optical coding and digital image processing stages, enable significant capabilities for extending the depth of field of imaging systems. In this study, we demonstrated a deeply learned far-infrared WFC camera with an extended depth of field. We designed and optimized a high-order polynomial phase mask by a genetic algorithm, exhibiting a higher defocus consistency of the modulated transfer functions than works published previously. Additionally, we trained a generative adversarial network based on a synthesized WFC dataset for the digital processing part, which is more effective and robust than conventional decoding methods. Furthermore, we captured real-world infrared images using the WFC camera with far, middle, and near object distances. Their results after wavefront coding/decoding showed that the model of deeply learned networks improves the image quality and signal-to-noise ratio significantly and quickly. Therefore, we construct a novel artificial intelligent method of deeply learned WFC optical imaging by applying infrared wavelengths, but not limited to, and provide good potential for its practical application in "smart" imaging and large range target detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI40应助犹豫书瑶采纳,获得10
刚刚
迅速的雅彤完成签到,获得积分10
1秒前
今后应助布吉岛采纳,获得10
1秒前
糖歌吃瘦发布了新的文献求助10
2秒前
3秒前
Biu发布了新的文献求助50
4秒前
6秒前
冬瓜君完成签到,获得积分10
6秒前
林狗发布了新的文献求助10
8秒前
khh发布了新的文献求助10
8秒前
高发完成签到 ,获得积分10
9秒前
9秒前
9秒前
毛豆应助自由水彤采纳,获得10
10秒前
星辰大海应助佳远采纳,获得10
10秒前
Jasper应助zhongmingxiu采纳,获得10
12秒前
12秒前
12秒前
suzhenyue完成签到,获得积分10
13秒前
haloo关注了科研通微信公众号
14秒前
幼儿园老大完成签到 ,获得积分10
14秒前
15秒前
布吉岛发布了新的文献求助10
16秒前
chen11完成签到 ,获得积分10
18秒前
诚心的若南完成签到,获得积分10
20秒前
彭于晏应助nenoaowu采纳,获得10
21秒前
Akim应助禁止通行采纳,获得10
22秒前
犹豫书瑶发布了新的文献求助10
22秒前
22秒前
酷波er应助曾经的小王采纳,获得30
26秒前
26秒前
cocolu应助橙子fy16_采纳,获得20
26秒前
IlIIlIlIIIllI应助橙子fy16_采纳,获得20
26秒前
归尘发布了新的文献求助10
28秒前
30秒前
欢呼的冰蝶完成签到,获得积分10
32秒前
chase发布了新的文献求助10
32秒前
32秒前
32秒前
33秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471228
求助须知:如何正确求助?哪些是违规求助? 3064103
关于积分的说明 9087449
捐赠科研通 2754912
什么是DOI,文献DOI怎么找? 1511625
邀请新用户注册赠送积分活动 698541
科研通“疑难数据库(出版商)”最低求助积分说明 698404