A hybrid Transformer approach for Chinese NER with features augmentation

计算机科学 变压器 人工智能 自然语言处理 电气工程 工程类 电压
作者
Zhigang Jin,Xiaoyong He,Xiaodong Wu,Xianfeng Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:209: 118385-118385 被引量:5
标识
DOI:10.1016/j.eswa.2022.118385
摘要

Named entity recognition (NER) plays an important role in many downstream tasks of natural language processing, such as knowledge extraction and information retrieval. NER of Chinese is more challenging than that of English due to lack of the explicit word boundary. Features augmentation is a potential way to improve NER model of Chinese. Pre-trained models can implicitly preserve prior knowledge with additional features. This paper proposes a hybrid Transformer approach, which first utilize the fused additional features embeddings (e.g. char embeddings, bigram embeddings, lattice embeddings and BERT embeddings) as distributed representations to augment the representation ability of model. In addition, a new training strategy named DF strategy is proposed to efficiently fine-tune Bidirectional Encoder Representations from Transformers (BERT) and other embeddings in balance. Then, the proposed model can perceive the relations of features by introducing relative position embeddings to an additional adapted Transformer encoder. Lastly, a standard Conditional Random Field is used to alleviate the obvious tag errors. The proposed model is applied to four representative Chinese datasets to investigate its performance. Experiments results show that the proposed model outperforms the other popular models in terms of accuracy. The proposed BL-BTC model can effectively improve the recognition performance of formal and informal texts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
俏皮的安萱完成签到 ,获得积分10
1秒前
yxy发布了新的文献求助10
1秒前
称心采枫完成签到 ,获得积分10
2秒前
Nana完成签到,获得积分10
4秒前
6秒前
李健的小迷弟应助ccq采纳,获得10
7秒前
元谷雪应助小甄甄采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
华仔应助黎明采纳,获得10
10秒前
aaaaaa完成签到,获得积分10
11秒前
科研通AI2S应助H.采纳,获得10
12秒前
开心发布了新的文献求助10
16秒前
小白杨完成签到,获得积分10
16秒前
20秒前
22秒前
24秒前
兴奋的平松完成签到,获得积分10
24秒前
阳光小虾米完成签到,获得积分10
25秒前
大模型应助666采纳,获得10
27秒前
九月完成签到,获得积分10
27秒前
28秒前
wqy发布了新的文献求助10
28秒前
29秒前
美满的稚晴完成签到 ,获得积分10
31秒前
科研通AI2S应助义气断缘采纳,获得30
33秒前
巫雁发布了新的文献求助10
33秒前
34秒前
xuan完成签到,获得积分20
38秒前
zojoy完成签到,获得积分10
38秒前
Keven发布了新的文献求助10
38秒前
好好学习完成签到,获得积分10
39秒前
槑槑完成签到 ,获得积分10
41秒前
安心6666完成签到 ,获得积分10
42秒前
科研通AI2S应助叶孤城采纳,获得10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023