A review of automated sleep disorder detection

多导睡眠图 人工智能 计算机科学 睡眠(系统调用) 机器学习 睡眠呼吸暂停 睡眠障碍 睡眠阶段 阻塞性睡眠呼吸暂停 脑电图 失眠症 医学 精神科 操作系统 内科学
作者
Shuting Xu,Oliver Faust,Silvia Seoni,Subrata Chakraborty,Prabal Datta Barua,Hui Wen Loh,Heather Elphick,Filippo Molinari,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:150: 106100-106100 被引量:43
标识
DOI:10.1016/j.compbiomed.2022.106100
摘要

Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王俊完成签到,获得积分10
刚刚
Hello应助凯蒂采纳,获得10
刚刚
lyyyy发布了新的文献求助10
1秒前
1秒前
MRM发布了新的文献求助10
2秒前
隐形曼青应助小乔采纳,获得10
2秒前
111完成签到,获得积分10
4秒前
彭于晏应助栗子采纳,获得10
4秒前
慕青应助PeizeWu采纳,获得10
4秒前
桃子爱学习完成签到,获得积分10
5秒前
5秒前
明亮依琴完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
8秒前
科研通AI5应助知识探索家采纳,获得10
9秒前
萱萱发布了新的文献求助10
10秒前
锦江完成签到,获得积分10
10秒前
博修发布了新的文献求助10
11秒前
泡泡发布了新的文献求助10
12秒前
ant完成签到,获得积分10
13秒前
14秒前
dyy关闭了dyy文献求助
14秒前
dliu201304发布了新的文献求助10
15秒前
17秒前
17秒前
17秒前
renpp822发布了新的文献求助20
18秒前
19秒前
PeizeWu发布了新的文献求助10
20秒前
CHB只争朝夕完成签到 ,获得积分10
20秒前
karyoter完成签到,获得积分10
21秒前
栗子发布了新的文献求助10
21秒前
陈1完成签到,获得积分10
21秒前
22秒前
23秒前
24秒前
李浩然发布了新的文献求助10
25秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672312
求助须知:如何正确求助?哪些是违规求助? 3228717
关于积分的说明 9781603
捐赠科研通 2939143
什么是DOI,文献DOI怎么找? 1610605
邀请新用户注册赠送积分活动 760682
科研通“疑难数据库(出版商)”最低求助积分说明 736174