亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review of automated sleep disorder detection

多导睡眠图 人工智能 计算机科学 睡眠(系统调用) 机器学习 睡眠呼吸暂停 睡眠障碍 睡眠阶段 阻塞性睡眠呼吸暂停 脑电图 失眠症 医学 精神科 内科学 操作系统
作者
Shuting Xu,Oliver Faust,Silvia Seoni,Subrata Chakraborty,Prabal Datta Barua,Hui Wen Loh,Heather Elphick,Filippo Molinari,U. Rajendra Acharya
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106100-106100 被引量:75
标识
DOI:10.1016/j.compbiomed.2022.106100
摘要

Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助WittingGU采纳,获得10
6秒前
羊屎蛋完成签到 ,获得积分10
6秒前
研友_08oErn完成签到,获得积分20
7秒前
吴兰田完成签到,获得积分10
7秒前
顺利一德完成签到 ,获得积分10
9秒前
研友_08oErn发布了新的文献求助30
11秒前
11秒前
14秒前
船长完成签到,获得积分10
16秒前
Hairee发布了新的文献求助10
16秒前
zjjcug发布了新的文献求助10
19秒前
寻道图强完成签到,获得积分0
25秒前
zyh完成签到 ,获得积分10
29秒前
31秒前
Hairee完成签到,获得积分10
40秒前
46秒前
动听的涵山完成签到,获得积分10
47秒前
S1mon发布了新的文献求助10
48秒前
半夏完成签到 ,获得积分10
49秒前
Lina完成签到,获得积分10
51秒前
51秒前
hjb发布了新的文献求助10
51秒前
58秒前
李健应助甜美的梦旋采纳,获得10
59秒前
59秒前
WittingGU发布了新的文献求助10
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
聪慧鸭子应助科研通管家采纳,获得10
1分钟前
hjb完成签到,获得积分20
1分钟前
水果咔咔咔完成签到,获得积分10
1分钟前
王0你萌完成签到 ,获得积分10
1分钟前
回火青年完成签到,获得积分10
1分钟前
可爱的函函应助123采纳,获得10
1分钟前
NexusExplorer应助sci大户采纳,获得10
1分钟前
李健的小迷弟应助S1mon采纳,获得10
1分钟前
NexusExplorer应助xuwenli采纳,获得10
1分钟前
1分钟前
旺旺完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880361
求助须知:如何正确求助?哪些是违规求助? 6570993
关于积分的说明 15689624
捐赠科研通 5000006
什么是DOI,文献DOI怎么找? 2694129
邀请新用户注册赠送积分活动 1635953
关于科研通互助平台的介绍 1593390