Poly(vinyl Alcohol) (PVA)-Based Hydrogel Scaffold with Isotropic Ultratoughness Enabled by Dynamic Amine–Catechol Interactions

乙烯醇 自愈水凝胶 脚手架 极限抗拉强度 高分子化学 各向同性 材料科学 复合材料 生物医学工程 聚合物 量子力学 医学 物理
作者
Tao Shui,Mingfei Pan,An Li,Hongbing Fan,Jianping Wu,Qi Liu,Hongbo Zeng
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (19): 8613-8628 被引量:29
标识
DOI:10.1021/acs.chemmater.2c01582
摘要

Hydrogels, serving as promising load-bearing materials, often suffer from limited long-term stability due to their insufficient mechanical strength. One of the viable methods is to engineer hydrogels with muscle-like anisotropic structures to enable mechanical reinforcement along the alignment direction (e.g., artificial tendons) while sacrificing the mechanical strength in the perpendicular direction. However, for connective tissues such as the fibrous membranes of the articular capsule with fibers interwoven to resist excessive stretching and distension in multiple directions, isotropic mechanical strength is highly demanding. In this work, inspired by the dynamic amine-catechol interactions derived from mussel foot proteins (Mfps), an innovative strategy is developed to incorporate Mfps-like conjugates as elastic connections into the poly(vinyl alcohol) (PVA) matrix, mimicking the multidirectional fibrous bundles of connective tissues. Superior isotropic tensile strength (13.3 ± 0.5 MPa), ultratoughness (60.1 ± 2.6 MJ/m3), and resilience are achieved in this hydrogel, which surpasses most of the reported biocompatible hydrogels. Additionally, this hydrogel exhibits diverse functionalities such as underwater adhesion and conductivity due to the multiple dynamic amine-catechol interactions engineered in the hydrogel. The versatility of this hydrogel offers a broad range of possibilities as artificial scaffolds with enhanced isotropic mechanical strength and cell affinity for the long service term.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luu完成签到,获得积分20
刚刚
Huaiman发布了新的文献求助10
刚刚
NAOKI应助FOODHUA采纳,获得10
1秒前
苹果小八发布了新的文献求助10
2秒前
tyl发布了新的文献求助10
3秒前
5秒前
林洛沁完成签到,获得积分10
6秒前
6秒前
QDL发布了新的文献求助10
7秒前
xjcy应助浅浅采纳,获得10
7秒前
封尘逸动完成签到,获得积分10
7秒前
7秒前
Huaiman完成签到,获得积分10
7秒前
ksr8888应助钟天美采纳,获得10
8秒前
ksr8888应助钟天美采纳,获得10
8秒前
脑洞疼应助real季氢采纳,获得10
9秒前
beikeyy发布了新的文献求助30
10秒前
taotao发布了新的文献求助10
10秒前
11秒前
Re_move完成签到,获得积分10
11秒前
13秒前
Vivilla完成签到,获得积分10
14秒前
sch发布了新的文献求助10
14秒前
能干世界完成签到 ,获得积分20
15秒前
16秒前
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
18秒前
情怀应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
杳鸢应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
starofjlu应助科研通管家采纳,获得20
18秒前
所所应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得30
18秒前
梦在彼岸应助科研通管家采纳,获得20
18秒前
活泼学生完成签到 ,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163904
求助须知:如何正确求助?哪些是违规求助? 2814758
关于积分的说明 7906420
捐赠科研通 2474340
什么是DOI,文献DOI怎么找? 1317459
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198