3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer’s Disease Diagnosis

计算机科学 人工智能 可解释性 特征学习 机器学习 深度学习 特征(语言学) 模式识别(心理学) 判别式 哲学 语言学
作者
Zifeng Qiu,Peng Yang,Chunlun Xiao,Shuqiang Wang,Xiaohua Xiao,Jing Qin,Chuan-Ming Liu,Tianfu Wang,Baiying Lei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3161-3175 被引量:29
标识
DOI:10.1109/tmi.2024.3386937
摘要

Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文的面包完成签到,获得积分10
1秒前
1秒前
Jason发布了新的文献求助10
1秒前
xxfsx应助亓大大采纳,获得10
2秒前
2秒前
3秒前
打打应助整齐的冰珍采纳,获得10
3秒前
柴啊发布了新的文献求助10
3秒前
4秒前
强强发布了新的文献求助10
4秒前
5秒前
deer完成签到,获得积分10
5秒前
5秒前
充电宝应助sunstar采纳,获得10
6秒前
语雪发布了新的文献求助10
7秒前
不许焦绿o发布了新的文献求助10
8秒前
极品男大发布了新的文献求助10
8秒前
郭萌完成签到,获得积分10
8秒前
NexusExplorer应助见贤思齐采纳,获得30
8秒前
草莓软糖完成签到,获得积分10
8秒前
笨笨的兰完成签到,获得积分10
8秒前
沈惠映完成签到 ,获得积分10
9秒前
9秒前
科目三应助11采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
釉荼发布了新的文献求助10
10秒前
浊酒临江风完成签到 ,获得积分10
11秒前
11秒前
观察者小黑完成签到,获得积分10
11秒前
11秒前
TARS完成签到,获得积分10
11秒前
充电宝应助极品男大采纳,获得10
11秒前
石本松发布了新的文献求助10
12秒前
12秒前
12秒前
叶嘉琪关注了科研通微信公众号
12秒前
亓大大完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465271
求助须知:如何正确求助?哪些是违规求助? 4569649
关于积分的说明 14320326
捐赠科研通 4496051
什么是DOI,文献DOI怎么找? 2463064
邀请新用户注册赠送积分活动 1452084
关于科研通互助平台的介绍 1427253