3D Multimodal Fusion Network With Disease-Induced Joint Learning for Early Alzheimer’s Disease Diagnosis

计算机科学 人工智能 可解释性 特征学习 机器学习 深度学习 特征(语言学) 模式识别(心理学) 判别式 哲学 语言学
作者
Zifeng Qiu,Peng Yang,Chunlun Xiao,Shuqiang Wang,Xiaohua Xiao,Jing Qin,Chuan-Ming Liu,Tianfu Wang,Baiying Lei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3161-3175 被引量:8
标识
DOI:10.1109/tmi.2024.3386937
摘要

Multimodal neuroimaging provides complementary information critical for accurate early diagnosis of Alzheimer's disease (AD). However, the inherent variability between multimodal neuroimages hinders the effective fusion of multimodal features. Moreover, achieving reliable and interpretable diagnoses in the field of multimodal fusion remains challenging. To address them, we propose a novel multimodal diagnosis network based on multi-fusion and disease-induced learning (MDL-Net) to enhance early AD diagnosis by efficiently fusing multimodal data. Specifically, MDL-Net proposes a multi-fusion joint learning (MJL) module, which effectively fuses multimodal features and enhances the feature representation from global, local, and latent learning perspectives. MJL consists of three modules, global-aware learning (GAL), local-aware learning (LAL), and outer latent-space learning (LSL) modules. GAL via a self-adaptive Transformer (SAT) learns the global relationships among the modalities. LAL constructs local-aware convolution to learn the local associations. LSL module introduces latent information through outer product operation to further enhance feature representation. MDL-Net integrates the disease-induced region-aware learning (DRL) module via gradient weight to enhance interpretability, which iteratively learns weight matrices to identify AD-related brain regions. We conduct the extensive experiments on public datasets and the results confirm the superiority of our proposed method. Our code will be available at: https://github.com/qzf0320/MDL-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
拼搏的盼山完成签到 ,获得积分10
3秒前
5秒前
7秒前
7秒前
绛羽镜完成签到 ,获得积分10
7秒前
8秒前
Zz完成签到 ,获得积分10
8秒前
JamesPei应助细心蚂蚁采纳,获得10
9秒前
zero完成签到 ,获得积分10
10秒前
10秒前
11秒前
原居正发布了新的文献求助10
11秒前
11秒前
12秒前
年轻迪奥完成签到,获得积分10
12秒前
空白发布了新的文献求助10
13秒前
小卷粉完成签到 ,获得积分10
13秒前
14秒前
15秒前
16秒前
科研通AI5应助迷人若冰采纳,获得10
16秒前
YCG完成签到 ,获得积分10
16秒前
16秒前
零零二完成签到 ,获得积分10
16秒前
18秒前
19秒前
Ava应助空白采纳,获得10
19秒前
衣兮完成签到,获得积分10
19秒前
用头打碟发布了新的文献求助10
20秒前
勤劳元瑶完成签到,获得积分10
20秒前
潘杰发布了新的文献求助10
20秒前
dragonlee发布了新的文献求助10
23秒前
Abdurrahman完成签到,获得积分10
24秒前
雪鸽鸽发布了新的文献求助10
24秒前
共享精神应助用头打碟采纳,获得10
25秒前
28秒前
铁马冰河入梦来完成签到 ,获得积分10
29秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669843
求助须知:如何正确求助?哪些是违规求助? 3227318
关于积分的说明 9774958
捐赠科研通 2937434
什么是DOI,文献DOI怎么找? 1609349
邀请新用户注册赠送积分活动 760256
科研通“疑难数据库(出版商)”最低求助积分说明 735765