Disentangling Modality and Posture Factors: Memory-Attention and Orthogonal Decomposition for Visible-Infrared Person Re-Identification

模态(人机交互) 计算机科学 人工智能 模式识别(心理学) 计算机视觉 集合(抽象数据类型) 鉴定(生物学) 匹配(统计) 对比度(视觉) 子空间拓扑 数学 生物 植物 统计 程序设计语言
作者
Zefeng Lu,Ronghao Lin,Haifeng Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3384023
摘要

Striving to match the person identities between visible (VIS) and near-infrared (NIR) images, VIS-NIR reidentification (Re-ID) has attracted increasing attention due to its wide applications in low-light scenes. However, owing to the modality and pose discrepancies exhibited in heterogeneous images, the extracted representations inevitably comprise various modality and posture factors, impacting the matching of cross-modality person identity. To solve the problem, we propose a disentangling modality and posture factors (DMPFs) model to disentangle modality and posture factors by fusing the information of features memory and pedestrian skeleton. Specifically, the DMPF comprises three modules: three-stream features extraction network (TFENet), modality factor disentanglement (MFD), and posture factor disentanglement (PFD). First, aiming to provide memory and skeleton information for modality and posture factors disentanglement, the TFENet is designed as a three-stream network to extract VIS-NIR image features and skeleton features. Second, to eliminate modality discrepancy across different batches, we maintain memory queues of previous batch features through the momentum updating mechanism and propose MFD to integrate features in the whole training set by memory-attention layers. These layers explore intramodality and intermodality relationships between features from the current batch and memory queues under the optimization of the optimal transport (OT) method, which encourages the heterogeneous features with the same identity to present higher similarity. Third, to decouple the posture factors from representations, we introduce the PFD module to learn posture-unrelated features with the assistance of the skeleton features. Besides, we perform subspace orthogonal decomposition on both image and skeleton features to separate the posture-related and identity-related information. The posture-related features are adopted to disentangle the posture factors from representations by a designed posture-features consistency (PfC) loss, while the identity-related features are concatenated to obtain more discriminative identity representations. The effectiveness of DMPF is validated through comprehensive experiments on two VIS-NIR pedestrian Re-ID datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凤凤发布了新的文献求助10
1秒前
Zz完成签到 ,获得积分0
1秒前
南宫萍完成签到,获得积分10
2秒前
佟莫言完成签到 ,获得积分10
3秒前
易三木完成签到,获得积分10
3秒前
LYDZ1发布了新的文献求助10
4秒前
你有点难追完成签到,获得积分10
4秒前
Alisha完成签到,获得积分10
4秒前
充电宝应助愤怒也呵呵采纳,获得10
5秒前
6秒前
fmx完成签到,获得积分10
6秒前
10秒前
奋斗不止发布了新的文献求助10
11秒前
13秒前
Jasper应助坚强的荔枝采纳,获得10
13秒前
深情安青应助凤凤采纳,获得10
13秒前
14秒前
哈卷关注了科研通微信公众号
15秒前
17秒前
WangY1263发布了新的文献求助10
19秒前
亿元发布了新的文献求助10
20秒前
黑暗炸鸡完成签到,获得积分10
21秒前
chen发布了新的文献求助30
21秒前
美丽电源完成签到,获得积分10
24秒前
白三烯完成签到 ,获得积分10
25秒前
28秒前
28秒前
SciGPT应助亿元采纳,获得10
29秒前
29秒前
wanci应助chen采纳,获得10
31秒前
35秒前
白潇潇完成签到 ,获得积分10
35秒前
36秒前
mml发布了新的文献求助10
36秒前
小可爱完成签到 ,获得积分10
37秒前
37秒前
38秒前
行者无疆完成签到,获得积分10
38秒前
田様应助栖xx采纳,获得10
38秒前
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137423
求助须知:如何正确求助?哪些是违规求助? 2788470
关于积分的说明 7786719
捐赠科研通 2444666
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625731
版权声明 601023