Disentangling Modality and Posture Factors: Memory-Attention and Orthogonal Decomposition for Visible-Infrared Person Re-Identification

模态(人机交互) 计算机科学 人工智能 模式识别(心理学) 计算机视觉 集合(抽象数据类型) 鉴定(生物学) 匹配(统计) 对比度(视觉) 子空间拓扑 数学 生物 植物 统计 程序设计语言
作者
Zefeng Lu,Ronghao Lin,Haifeng Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3384023
摘要

Striving to match the person identities between visible (VIS) and near-infrared (NIR) images, VIS-NIR reidentification (Re-ID) has attracted increasing attention due to its wide applications in low-light scenes. However, owing to the modality and pose discrepancies exhibited in heterogeneous images, the extracted representations inevitably comprise various modality and posture factors, impacting the matching of cross-modality person identity. To solve the problem, we propose a disentangling modality and posture factors (DMPFs) model to disentangle modality and posture factors by fusing the information of features memory and pedestrian skeleton. Specifically, the DMPF comprises three modules: three-stream features extraction network (TFENet), modality factor disentanglement (MFD), and posture factor disentanglement (PFD). First, aiming to provide memory and skeleton information for modality and posture factors disentanglement, the TFENet is designed as a three-stream network to extract VIS-NIR image features and skeleton features. Second, to eliminate modality discrepancy across different batches, we maintain memory queues of previous batch features through the momentum updating mechanism and propose MFD to integrate features in the whole training set by memory-attention layers. These layers explore intramodality and intermodality relationships between features from the current batch and memory queues under the optimization of the optimal transport (OT) method, which encourages the heterogeneous features with the same identity to present higher similarity. Third, to decouple the posture factors from representations, we introduce the PFD module to learn posture-unrelated features with the assistance of the skeleton features. Besides, we perform subspace orthogonal decomposition on both image and skeleton features to separate the posture-related and identity-related information. The posture-related features are adopted to disentangle the posture factors from representations by a designed posture-features consistency (PfC) loss, while the identity-related features are concatenated to obtain more discriminative identity representations. The effectiveness of DMPF is validated through comprehensive experiments on two VIS-NIR pedestrian Re-ID datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沧海应助小冰采纳,获得10
1秒前
WD发布了新的文献求助10
1秒前
2秒前
111发布了新的文献求助30
2秒前
楠楠完成签到,获得积分10
2秒前
爆米花应助fkh采纳,获得10
3秒前
4秒前
冰雪物语发布了新的文献求助10
5秒前
灵巧小鸽子完成签到,获得积分10
6秒前
黑暗之神完成签到,获得积分10
7秒前
8秒前
飞雪完成签到,获得积分10
8秒前
荷月初六发布了新的文献求助10
10秒前
JamesPei应助WD采纳,获得10
11秒前
李健的粉丝团团长应助赢赢采纳,获得100
11秒前
苏远山爱吃西红柿完成签到,获得积分10
12秒前
正义狗狗侠完成签到,获得积分10
13秒前
Zzoe_S完成签到,获得积分10
14秒前
xhm完成签到,获得积分10
17秒前
大个应助123采纳,获得10
18秒前
慕青应助全能发文章采纳,获得10
19秒前
22秒前
23秒前
ussiMi发布了新的文献求助10
25秒前
研友_VZG7GZ应助小龙采纳,获得10
25秒前
小冰完成签到,获得积分10
26秒前
害羞外套发布了新的文献求助10
27秒前
27秒前
徐徐完成签到,获得积分10
27秒前
28秒前
31秒前
1111发布了新的文献求助10
31秒前
32秒前
CAOHOU应助文竹采纳,获得10
34秒前
35秒前
丘比特应助冷酷夏烟采纳,获得10
35秒前
36秒前
大个应助小路采纳,获得10
36秒前
38秒前
39秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523760
关于积分的说明 11218505
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800507
邀请新用户注册赠送积分活动 879117
科研通“疑难数据库(出版商)”最低求助积分说明 807182