Neural reward representations enable utilitarian welfare maximization

福利 最大化 心理学 经济 微观经济学 计算机科学 市场经济
作者
Alexander Soutschek,Christopher J. Burke,Pyungwon Kang,Nuri Wieland,Nick Netzer,Philippe N. Tobler
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:44 (21): e2376232024-e2376232024
标识
DOI:10.1523/jneurosci.2376-23.2024
摘要

From deciding which meal to prepare for our guests to trading off the proenvironmental effects of climate protection measures against their economic costs, we often must consider the consequences of our actions for the well-being of others (welfare). Vexingly, the tastes and views of others can vary widely. To maximize welfare according to the utilitarian philosophical tradition, decision-makers facing conflicting preferences of others should choose the option that maximizes the sum of the subjective value (utility) of the entire group. This notion requires comparing the intensities of preferences across individuals. However, it remains unclear whether such comparisons are possible at all and (if they are possible) how they might be implemented in the brain. Here, we show that female and male participants can both learn the preferences of others by observing their choices and represent these preferences on a common scale to make utilitarian welfare decisions. On the neural level, multivariate support vector regressions revealed that a distributed activity pattern in the ventromedial prefrontal cortex (VMPFC), a brain region previously associated with reward processing, represented the preference strength of others. Strikingly, also the utilitarian welfare of others was represented in the VMPFC and relied on the same neural code as the estimated preferences of others. Together, our findings reveal that humans can behave as if they maximized utilitarian welfare using a specific utility representation and that the brain enables such choices by repurposing neural machinery processing the reward others receive.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
桐桐应助浅笑_随风采纳,获得10
1秒前
FashionBoy应助这小猪真帅采纳,获得10
1秒前
小涂同学发布了新的文献求助10
1秒前
诺克萨斯发布了新的文献求助10
1秒前
1秒前
霍师傅发布了新的文献求助10
2秒前
丁点发布了新的文献求助10
2秒前
konoraha发布了新的文献求助10
3秒前
香蕉觅云应助mookie采纳,获得10
3秒前
SciGPT应助mahuahua采纳,获得10
4秒前
4秒前
英俊的铭应助霍师傅采纳,获得10
5秒前
蜡笔小新发布了新的文献求助10
5秒前
Owen应助cy采纳,获得10
5秒前
6秒前
8秒前
8秒前
8秒前
8秒前
9秒前
严好香完成签到 ,获得积分10
9秒前
9秒前
10秒前
长度2到发布了新的文献求助10
11秒前
11秒前
hyman1218发布了新的文献求助50
11秒前
君子扑火完成签到,获得积分10
11秒前
淡定的勒完成签到,获得积分10
12秒前
12秒前
浅笑_随风发布了新的文献求助10
12秒前
yinzenglinnn发布了新的文献求助10
12秒前
12秒前
zhangguo发布了新的文献求助100
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
李健应助完美平灵采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515