Modulation of CdS nanoparticles decorated bimetallic Fe/Mn-MOFs Z-scheme heterojunctions for enhancing photocatalytic degradation of tetracycline

光催化 双金属片 异质结 降级(电信) 材料科学 纳米颗粒 电子转移 催化作用 化学工程 纳米技术 光化学 化学 光电子学 有机化学 电信 计算机科学 工程类
作者
Rong-Hua Zhang,Kaicheng Jia,Zaikun Xue,Zhaoning Hu,Ning Yuan
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:992: 174462-174462 被引量:3
标识
DOI:10.1016/j.jallcom.2024.174462
摘要

Structural design on photocatalysts is of great importance to improve the activity for the degradation of organic contamination. Currently, the key to developing sustainable photocatalytic technology is streamlining the preparation process and effectively expanding the active sites. To solve this issue, the coupling of crystalline Fe/Mn-MOF and CdS particles through a controlled self-assembly hydrothermal routine is well favored for the uniform growth of CdS particles on the surface of Fe/Mn-MOF to achieve more reactive sites and photogenerated carrier migration. Simultaneously, modulated bandgap engineering and Z-scheme heterojunction are applied to disclose the photo-oxidative mechanism. The bimetallic Fe/Mn-MOF@CdS catalyst exhibited enhanced activity for tetracycline removal compared to the individual Fe/Mn-MOF (NBM2) at 7.47% and CdS at 78.71%, the photocatalysis efficiency could reach 90.95% over 160 min with a mineralization rate of 51.9%. This arises from the enhancement of light absorption and electron transfer facilitated by heterojunctions, as well as the increased active sites promoting photocatalytic activity. Key species involved in the photocatalysis were captured using different trapping agents. The primary reactive species •O2– was identified to play an indispensable role in tetracycline removal. Furthermore, the 22 intermediates involved in degradation were evaluated by toxicity. The study opens a new avenue for the fabrication of bimetallic photocatalysts with a novel degradation mechanism, which would be instructive for the development of photocatalysis applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要板凳完成签到 ,获得积分10
2秒前
3秒前
Bminor完成签到,获得积分10
4秒前
可可可126完成签到 ,获得积分10
6秒前
要减肥人杰完成签到,获得积分20
6秒前
chongchong完成签到 ,获得积分10
7秒前
笨笨友安完成签到,获得积分10
8秒前
9秒前
王小胖完成签到,获得积分20
10秒前
Keymo发布了新的文献求助10
10秒前
11秒前
12秒前
踏实的傲白完成签到 ,获得积分10
12秒前
自觉誉发布了新的文献求助10
13秒前
情怀应助橙花采纳,获得10
13秒前
xiaoze完成签到,获得积分10
13秒前
文献求助完成签到,获得积分10
14秒前
14秒前
xsq86发布了新的文献求助10
15秒前
领导范儿应助这丁采纳,获得10
16秒前
li完成签到 ,获得积分10
16秒前
Vicky完成签到 ,获得积分10
16秒前
juqiu发布了新的文献求助10
17秒前
SaSa发布了新的文献求助10
17秒前
BitBong完成签到,获得积分10
18秒前
18秒前
恐龙先生完成签到,获得积分10
19秒前
星辰大海应助要减肥人杰采纳,获得10
20秒前
学术咸鱼依白完成签到 ,获得积分10
20秒前
teadan完成签到 ,获得积分10
21秒前
21秒前
奇奇吃面发布了新的文献求助10
22秒前
酷波er应助雪花采纳,获得10
22秒前
斩封应助龙阔采纳,获得50
23秒前
菲菲高发布了新的文献求助10
23秒前
妖娃娃发布了新的文献求助700
24秒前
celia完成签到 ,获得积分10
24秒前
褚沧海发布了新的文献求助10
25秒前
26秒前
小蟹完成签到,获得积分20
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011