Drug-target interactions prediction via graph isomorphic network and cyclic training method

计算机科学 培训(气象学) 图形 人工智能 训练集 机器学习 理论计算机科学 数据挖掘 物理 气象学
作者
Yuhong Du,Yabing Yao,Jianxin Tang,Zhili Zhao,Zhuoyue Gou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123730-123730 被引量:2
标识
DOI:10.1016/j.eswa.2024.123730
摘要

Predicting drug-target interactions through computational methods holds the potential to provide more reliable candidates for subsequent experimental validation and reduce associated costs. Most methods for Drug-target Interactions (DTIs) prediction have made advancements from two perspectives, improving the accuracy of drug and target representations, and seeking more precise mapping functions between the drug and target spaces. In this study, we propose a model called CT-GINDTI, which prioritizes the optimization of the model training process based on considering aforementioned improvement. CT-GINDTI represents drugs as graphs and utilizes graph isomorphism network to better capture the inherent structural and relational properties of drugs. Additionally, we introduce a cyclic training method to address the imbalance issue between positive and negative samples by selecting more reliable negative samples. To evaluate the performance of CT-GINDTI, we conducted extensive experiments and compared its results with seven state-of-the-art methods in the field. The experimental results demonstrate that our proposed CT-GINDTI outperforms these existing methods, showcasing its superior achievement in the prediction of DTIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
quhayley应助LSS采纳,获得10
1秒前
hukun完成签到,获得积分10
1秒前
Ava应助刺猬采纳,获得10
1秒前
1秒前
2秒前
Ava应助子车半烟采纳,获得10
4秒前
4秒前
小蘑菇应助dw采纳,获得10
4秒前
4秒前
SUN发布了新的文献求助10
6秒前
云瑾应助范同学采纳,获得10
7秒前
7秒前
7秒前
噜啦啦完成签到,获得积分10
8秒前
CodeCraft应助酷酷萃采纳,获得10
8秒前
林慕然2023发布了新的文献求助10
9秒前
xxc关注了科研通微信公众号
10秒前
彭于彦祖应助花花采纳,获得30
10秒前
10秒前
刘哔完成签到,获得积分10
10秒前
10秒前
surain发布了新的文献求助10
10秒前
薰硝壤应助Cher1she采纳,获得30
10秒前
abcdefg完成签到,获得积分10
11秒前
11秒前
所所应助朵拉A梦采纳,获得10
11秒前
11秒前
11秒前
科研通AI2S应助coco采纳,获得10
12秒前
深情安青应助ArthurWaley采纳,获得10
12秒前
学术laji发布了新的文献求助10
12秒前
wangjing关注了科研通微信公众号
12秒前
SUN完成签到,获得积分10
14秒前
14秒前
噜啦啦发布了新的文献求助10
14秒前
eterny发布了新的文献求助10
15秒前
ouyangshi发布了新的文献求助10
16秒前
咪路完成签到,获得积分10
16秒前
科研废物完成签到 ,获得积分10
19秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685