储能
微球
材料科学
电化学
电化学能量转换
化学工程
化学
物理
电极
工程类
功率(物理)
物理化学
量子力学
作者
Ramzi Nasser,Hao Zhou,Habib Elhouichet,Saad Melhi,Zhou Li,Ji‐Ming Song
标识
DOI:10.1016/j.cej.2024.151554
摘要
Designing hybrid structure of transition metal oxides (TMOs) with controlled morphology can adjust the electronic structure and create more kinetics reactions. Herein, a new kind of NiFe2O4@NiCo2O4 nanocomposite was synthesized with one pot hydrothermal route. The unique hollow algae-like microspheres with plenty nanowires and the synergistic effect factors promote high electroactive sites and generate a built-in electric field. The constituted Mott-Schottky heterostructure creates strong interfacial interaction, paves the way for the electrolyte ions diffusion and results high charges transfer abilities by reducing the energy barriers in the heterointerfaces. As cathode material, the NiFe2O4@NiCo2O4 presents satisfactory specific capacity of 996C·g−1 at 0.5 A·g−1 and maintains ultrahigh capacity retention of 81 % at 30 A·g−1 with marvellous stability of only 6 % loss during 20,000 cycles. Interestingly, asymmetric hybrid supercapacitor device based NiFe2O4@NiCo2O4//active carbon (AC) provides tremendous energy density of 117.6 Wh·kg−1 at 438 W·kg−1 power density. What's more, all-solid-state device offers ultra-low self-discharge process of 9.5 % through 24 h. Therefore, the combination of NiFe2O4@NiCo2O4 to form Mott-Schottky heterojunction was a promising strategy to develop electrode material with high energy storage performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI