A framework for collaborative multi-robot mapping using spectral graph wavelets

机器人 计算机科学 里程计 分布式计算 同时定位和映射 实时计算 软件部署 图形 语义映射 人工智能 计算机视觉 移动机器人 理论计算机科学 软件工程
作者
Lukas Bernreiter,Shehryar Khattak,Lionel Ott,Roland Siegwart,Marco Hutter,César Cadena
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:43 (13): 2070-2088
标识
DOI:10.1177/02783649241246847
摘要

The exploration of large-scale unknown environments can benefit from the deployment of multiple robots for collaborative mapping. Each robot explores a section of the environment and communicates onboard pose estimates and maps to a central server to build an optimized global multi-robot map. Naturally, inconsistencies can arise between onboard and server estimates due to onboard odometry drift, failures, or degeneracies. The mapping server can correct and overcome such failure cases using computationally expensive operations such as inter-robot loop closure detection and multi-modal mapping. However, the individual robots do not benefit from the collaborative map if the mapping server provides no feedback. Although server updates from the multi-robot map can greatly alleviate the robotic mission strategically, most existing work lacks them, due to their associated computational and bandwidth-related costs. Motivated by this challenge, this paper proposes a novel collaborative mapping framework that enables global mapping consistency among robots and the mapping server. In particular, we propose graph spectral analysis, at different spatial scales, to detect structural differences between robot and server graphs, and to generate necessary constraints for the individual robot pose graphs. Our approach specifically finds the nodes that correspond to the drift’s origin rather than the nodes where the error becomes too large. We thoroughly analyze and validate our proposed framework using several real-world multi-robot field deployments where we show improvements of the onboard system up to 90% and can recover the onboard estimation from localization failures and even from the degeneracies within its estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微雨发布了新的文献求助10
刚刚
刚刚
母广明完成签到,获得积分10
1秒前
1秒前
科研通AI5应助端庄的云朵采纳,获得10
1秒前
万能图书馆应助孙二二采纳,获得10
1秒前
1秒前
1秒前
PJN发布了新的文献求助10
2秒前
bjyx完成签到,获得积分10
2秒前
zyt完成签到,获得积分20
4秒前
肖志勇完成签到,获得积分10
4秒前
桐桐应助李小胖采纳,获得30
5秒前
5秒前
贼拉瘦的美神完成签到,获得积分10
5秒前
雨rain完成签到 ,获得积分10
7秒前
7秒前
FashionBoy应助俊逸的代曼采纳,获得10
7秒前
Ghooor发布了新的文献求助10
7秒前
8秒前
无花果应助多送点采纳,获得10
9秒前
完美世界应助wuxunxun2015采纳,获得30
9秒前
gppdwyyx发布了新的文献求助10
11秒前
11秒前
PJN完成签到,获得积分20
11秒前
莫氓完成签到,获得积分10
12秒前
petrichor发布了新的文献求助10
12秒前
小野完成签到,获得积分10
12秒前
郭新玲发布了新的文献求助10
12秒前
JamesPei应助沫沫采纳,获得10
12秒前
希望天下0贩的0应助feng采纳,获得10
13秒前
void科学家发布了新的文献求助10
13秒前
欣慰冬亦发布了新的文献求助10
13秒前
Lucy完成签到,获得积分10
14秒前
漓漓子完成签到,获得积分10
14秒前
充电宝应助鸿淞采纳,获得10
15秒前
CL发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756935
求助须知:如何正确求助?哪些是违规求助? 3300366
关于积分的说明 10113326
捐赠科研通 3014784
什么是DOI,文献DOI怎么找? 1655754
邀请新用户注册赠送积分活动 790073
科研通“疑难数据库(出版商)”最低求助积分说明 753559