Knowledge and Data Dual-Driven Fault Diagnosis in Industrial Scenarios: A Survey

可解释性 计算机科学 稳健性(进化) 数据科学 领域(数学) 领域知识 对偶(语法数字) 数据驱动 可靠性(半导体) 领域(数学分析) 人工智能 基因 纯数学 量子力学 数学 物理 功率(物理) 化学 生物化学 数学分析 文学类 艺术
作者
Yimeng Wang,Jie Shen,Shusen Yang,Qing Han,Cong Zhao,Peng Zhao,Xuebin Ren
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (11): 19256-19277
标识
DOI:10.1109/jiot.2024.3387538
摘要

Knowledge and data dual-driven (KDDD) represents a novel paradigm that leverages the strengths of data-driven methods in feature representation and knowledge transfer, while also incorporating expertise accumulated by domain experts. This integration allows KDDD methods to enhance the interpretability, reliability, and robustness of fault diagnosis (FD) approaches, making them widely studied in the field of industrial equipment (IE) FD. Despite the existence of systematic and valuable reviews on IE FD, there remains a gap in the literature regarding the review of KDDD IE FD methods. Therefore, conducting a comprehensive investigation into KDDD IE FD methods is of utmost importance and necessity. Such an investigation will facilitate readers' understanding of advanced technologies and enable the rapid design of effective solutions for real-world IE FD problems. In this survey, we first outline the limitations of data-driven and knowledge-based FD methods, highlighting the need for KDDD methods. Subsequently, we delve into the details of how domain knowledge can be effectively integrated with deep learning models. Additionally, we analyze challenges of KDDD methods in real-world IE FD applications, while also discussing novel solutions for prospective research directions. Finally, we conclude this survey, emphasizing the inspiration it offers to researchers interested in advancing IE FD, and its potential to stimulate practical IE FD research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
hui完成签到,获得积分10
1秒前
kiki发布了新的文献求助10
1秒前
今后应助无敌万达阿迪萨采纳,获得30
2秒前
科研小民工应助HJJHJH采纳,获得50
2秒前
Lyl完成签到,获得积分10
2秒前
大个应助结实的问寒采纳,获得10
2秒前
spring发布了新的文献求助10
3秒前
3秒前
4秒前
eason应助安安采纳,获得20
5秒前
5秒前
Hello应助浩然采纳,获得10
6秒前
温酒随行发布了新的文献求助10
6秒前
7秒前
tododoto完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
Dong完成签到,获得积分10
8秒前
ZHUTOU发布了新的文献求助10
8秒前
9秒前
10秒前
12秒前
12秒前
12秒前
13秒前
WXY发布了新的文献求助30
13秒前
科研通AI5应助曦子曦子采纳,获得10
13秒前
欢呼谷冬发布了新的文献求助10
14秒前
kx发布了新的文献求助10
14秒前
15秒前
15秒前
谨言发布了新的文献求助10
16秒前
16秒前
cnas完成签到,获得积分10
16秒前
klandcy完成签到,获得积分10
16秒前
白居易发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199