Mask-guided generative adversarial network for MRI-based CT synthesis

对抗制 生成对抗网络 生成语法 计算机科学 人工智能 放射科 医学 深度学习
作者
Yu Luo,Shaowei Zhang,Jie Ling,Zhiyi Lin,Zongming Wang,Shun Yao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:295: 111799-111799 被引量:4
标识
DOI:10.1016/j.knosys.2024.111799
摘要

Synthetic computed tomography (sCT) images from magnetic resonance imaging (MRI) data have broad applications in clinical medicine, including radiation oncology and surgical planning. With the development of deep learning technology in medical image analysis, convolution-based generative adversarial networks (GANs) have demonstrated their promising performance in synthesizing CT from MRI. However, many GAN variants tend to generate sCT images from MRI scans in an end-to-end manner, ignoring the distribution differences between different tissues and potentially leading to poor and unrealistic synthetic results. To solve this problem, we propose the MGDGAN, a mask-guided dual network based on GAN architecture for CT synthesis from MRI. Specifically, a mask that delineates the bone part (sBone) is first learned to guide the following synthesis, then the sBone and the soft-tissue part (sSoft-tissue) are synthesized through two parallel branches. Finally, the sCT image is obtained by the fusion of sBone and sSoft-tissue. Experimental results indicate that MGDGAN could generate sCT images with high accuracy in fine bone structure, brain tissue, and cerebral lesions, which are visually closer to the real CT (rCT) images. In quantitative evaluation, MGDGAN outperforms other state-of-the-art methods on multiple datasets, including CycleGAN, Pix2Pix, ECNN, cGAN9, APS and ResViT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
NikiJu完成签到,获得积分10
1秒前
寒冷的断秋应助WHITE采纳,获得10
2秒前
2秒前
Gengar发布了新的文献求助10
3秒前
4秒前
LXP发布了新的文献求助10
5秒前
6秒前
Siso发布了新的文献求助10
7秒前
慕青应助安详的嵩采纳,获得10
8秒前
ee完成签到,获得积分20
11秒前
12秒前
12秒前
Neltharion完成签到,获得积分10
13秒前
15秒前
Gengar发布了新的文献求助10
16秒前
王先森发布了新的文献求助10
16秒前
17秒前
snail完成签到,获得积分10
18秒前
小二郎应助梨水儿采纳,获得10
19秒前
19秒前
单薄的夜南应助惊蛰采纳,获得10
19秒前
Ava应助L3213036054采纳,获得10
20秒前
20秒前
希望天下0贩的0应助sinan采纳,获得10
21秒前
王春丽发布了新的文献求助10
21秒前
22秒前
22秒前
luyjabc完成签到,获得积分10
22秒前
22秒前
23秒前
皖医梁朝伟完成签到 ,获得积分0
23秒前
儒雅雅山发布了新的文献求助10
23秒前
王先森完成签到,获得积分10
24秒前
25秒前
hinelson完成签到,获得积分10
25秒前
25秒前
Orange应助meethaha采纳,获得10
25秒前
尽如给尽如的求助进行了留言
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014