已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual-view jointly learning improves personalized drug synergy prediction

对偶(语法数字) 计算机科学 药品 人工智能 机器学习 药理学 医学 艺术 文学类
作者
Xueliang Li,Bihan Shen,Fangyoumin Feng,Kunshi Li,Liangxiao Ma,Hong Li
标识
DOI:10.1101/2024.03.27.586892
摘要

Abstract Background Accurate and robust estimation of the synergistic drug combination is important for precision medicine. Although some computational methods have been developed, some predictions are still unreliable especially for the cross-dataset predictions, due to the complex mechanism of drug combinations and heterogeneity of cancer samples. Methods We have proposed JointSyn that utilizes dual-view jointly learning to predict sample-specific effects of drug combination from drug and cell features. JointSyn capture the drug synergy related features from two views. One view is the embedding of drug combination on cancer cell lines, and the other view is the combination of two drugs’ embeddings on cancer cell lines. Finally, the prediction net uses the features learned from the two views to predict the drug synergy of the drug combination on the cell line. In addition, we used the fine-tuning method to improve the JointSyn’s performance on the unseen subset within a dataset or cross dataset. Results JointSyn outperforms existing state-of-the-art methods in predictive accuracy and robustness across various benchmarks. Each view of JointSyn captures drug synergy-related characteristics and make complementary contributes to the final accurate prediction of drug combination. Moreover, JointSyn with fine-tuning improves its generalization ability to predict a novel drug combination or cancer sample only using a small number of experimental measurements. We also used JointSyn to generate an estimated atlas of drug synergy for pan-cancer and explored the differential pattern among cancers. Conclusions These results demonstrate the potential of JointSyn to predict drug synergy, supporting the development of personalized combinatorial therapies. The source code is available on GitHub at https://github.com/LiHongCSBLab/JointSyn .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kurimi发布了新的文献求助10
3秒前
ken完成签到 ,获得积分10
4秒前
5秒前
GGGirafe完成签到,获得积分10
7秒前
scanker1981完成签到,获得积分10
10秒前
影月完成签到,获得积分10
10秒前
xx发布了新的文献求助10
10秒前
华仔应助墨瞳采纳,获得10
11秒前
李健的小迷弟应助alulu采纳,获得10
11秒前
田様应助谦让的紫蓝采纳,获得10
11秒前
13秒前
花凉完成签到,获得积分10
14秒前
科研通AI6.1应助Disguise采纳,获得10
15秒前
16秒前
Kurimi完成签到,获得积分10
17秒前
花凉发布了新的文献求助10
18秒前
yang完成签到,获得积分10
20秒前
爱吃肉肉的蚂蚁完成签到,获得积分20
21秒前
wurugu发布了新的文献求助10
21秒前
zhjeddie完成签到 ,获得积分10
22秒前
开心点完成签到 ,获得积分10
22秒前
Thanks完成签到 ,获得积分10
24秒前
missing完成签到 ,获得积分10
26秒前
淡然绝山完成签到,获得积分10
31秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
33秒前
完美怜容完成签到 ,获得积分10
34秒前
Ning00000完成签到 ,获得积分10
35秒前
37秒前
科研通AI6.1应助早微采纳,获得10
38秒前
Yulanda完成签到 ,获得积分10
39秒前
希望天下0贩的0应助shinn采纳,获得10
43秒前
健忘的若魔完成签到,获得积分10
48秒前
Sing完成签到 ,获得积分10
50秒前
aDou完成签到 ,获得积分10
51秒前
54秒前
55秒前
56秒前
OnlyHarbour完成签到,获得积分10
56秒前
wurugu完成签到,获得积分10
57秒前
Lucas应助微光熠采纳,获得10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772121
求助须知:如何正确求助?哪些是违规求助? 5596217
关于积分的说明 15429142
捐赠科研通 4905232
什么是DOI,文献DOI怎么找? 2639279
邀请新用户注册赠送积分活动 1587204
关于科研通互助平台的介绍 1542058