Dual-view jointly learning improves personalized drug synergy prediction

对偶(语法数字) 计算机科学 药品 人工智能 机器学习 药理学 医学 艺术 文学类
作者
Xueliang Li,Bihan Shen,Fangyoumin Feng,Kunshi Li,Liangxiao Ma,Hong Li
标识
DOI:10.1101/2024.03.27.586892
摘要

Abstract Background Accurate and robust estimation of the synergistic drug combination is important for precision medicine. Although some computational methods have been developed, some predictions are still unreliable especially for the cross-dataset predictions, due to the complex mechanism of drug combinations and heterogeneity of cancer samples. Methods We have proposed JointSyn that utilizes dual-view jointly learning to predict sample-specific effects of drug combination from drug and cell features. JointSyn capture the drug synergy related features from two views. One view is the embedding of drug combination on cancer cell lines, and the other view is the combination of two drugs’ embeddings on cancer cell lines. Finally, the prediction net uses the features learned from the two views to predict the drug synergy of the drug combination on the cell line. In addition, we used the fine-tuning method to improve the JointSyn’s performance on the unseen subset within a dataset or cross dataset. Results JointSyn outperforms existing state-of-the-art methods in predictive accuracy and robustness across various benchmarks. Each view of JointSyn captures drug synergy-related characteristics and make complementary contributes to the final accurate prediction of drug combination. Moreover, JointSyn with fine-tuning improves its generalization ability to predict a novel drug combination or cancer sample only using a small number of experimental measurements. We also used JointSyn to generate an estimated atlas of drug synergy for pan-cancer and explored the differential pattern among cancers. Conclusions These results demonstrate the potential of JointSyn to predict drug synergy, supporting the development of personalized combinatorial therapies. The source code is available on GitHub at https://github.com/LiHongCSBLab/JointSyn .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煎妮发布了新的文献求助10
刚刚
刚刚
小树完成签到,获得积分10
1秒前
3秒前
AAA发布了新的文献求助10
3秒前
甜蜜乐松发布了新的文献求助10
4秒前
北川宾一完成签到,获得积分10
5秒前
随便发布了新的文献求助10
5秒前
6秒前
CipherSage应助王莫为采纳,获得10
6秒前
7秒前
7秒前
桐桐应助zkyyy采纳,获得10
8秒前
8秒前
林深沉发布了新的文献求助10
9秒前
NiuNiu发布了新的文献求助10
10秒前
10秒前
FashionBoy应助猛犸象冲冲冲采纳,获得10
10秒前
小赐完成签到,获得积分20
11秒前
11秒前
星辰大海应助马子妍采纳,获得10
11秒前
lala发布了新的文献求助10
12秒前
JamesPei应助444采纳,获得10
12秒前
玄天明月完成签到 ,获得积分10
12秒前
Ztx发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
Lyy发布了新的文献求助10
13秒前
14秒前
糖糖完成签到 ,获得积分10
14秒前
优美紫槐发布了新的文献求助10
14秒前
清爽的芷蕾完成签到,获得积分10
14秒前
认真做毕设的沙子完成签到,获得积分20
15秒前
欣喜觅风完成签到 ,获得积分10
15秒前
15秒前
思源应助phil采纳,获得10
16秒前
领导范儿应助凝子老师采纳,获得10
16秒前
王莫为发布了新的文献求助10
16秒前
孟龙威发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605669
求助须知:如何正确求助?哪些是违规求助? 4690288
关于积分的说明 14863003
捐赠科研通 4702367
什么是DOI,文献DOI怎么找? 2542226
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142