Dual-view jointly learning improves personalized drug synergy prediction

对偶(语法数字) 计算机科学 药品 人工智能 机器学习 药理学 医学 艺术 文学类
作者
Xueliang Li,Bihan Shen,Fangyoumin Feng,Kunshi Li,Liangxiao Ma,Hong Li
标识
DOI:10.1101/2024.03.27.586892
摘要

Abstract Background Accurate and robust estimation of the synergistic drug combination is important for precision medicine. Although some computational methods have been developed, some predictions are still unreliable especially for the cross-dataset predictions, due to the complex mechanism of drug combinations and heterogeneity of cancer samples. Methods We have proposed JointSyn that utilizes dual-view jointly learning to predict sample-specific effects of drug combination from drug and cell features. JointSyn capture the drug synergy related features from two views. One view is the embedding of drug combination on cancer cell lines, and the other view is the combination of two drugs’ embeddings on cancer cell lines. Finally, the prediction net uses the features learned from the two views to predict the drug synergy of the drug combination on the cell line. In addition, we used the fine-tuning method to improve the JointSyn’s performance on the unseen subset within a dataset or cross dataset. Results JointSyn outperforms existing state-of-the-art methods in predictive accuracy and robustness across various benchmarks. Each view of JointSyn captures drug synergy-related characteristics and make complementary contributes to the final accurate prediction of drug combination. Moreover, JointSyn with fine-tuning improves its generalization ability to predict a novel drug combination or cancer sample only using a small number of experimental measurements. We also used JointSyn to generate an estimated atlas of drug synergy for pan-cancer and explored the differential pattern among cancers. Conclusions These results demonstrate the potential of JointSyn to predict drug synergy, supporting the development of personalized combinatorial therapies. The source code is available on GitHub at https://github.com/LiHongCSBLab/JointSyn .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhijunXiang发布了新的文献求助30
刚刚
1秒前
1秒前
鲸鱼发布了新的文献求助10
1秒前
丛玉林完成签到,获得积分10
2秒前
科研通AI6应助SEANFLY采纳,获得10
2秒前
科研通AI5应助于大本事采纳,获得10
2秒前
爬不起来发布了新的文献求助10
2秒前
ab完成签到,获得积分10
2秒前
3秒前
Orange应助wb采纳,获得10
3秒前
3秒前
万能图书馆应助xun采纳,获得30
3秒前
大个应助林周采纳,获得10
3秒前
小哈发布了新的文献求助10
3秒前
Iq完成签到,获得积分10
4秒前
嘟嘟完成签到,获得积分10
4秒前
云康肖完成签到,获得积分10
4秒前
livian完成签到,获得积分10
4秒前
热情高跟鞋完成签到,获得积分10
5秒前
NexusExplorer应助golden采纳,获得10
5秒前
Lucas应助golden采纳,获得10
5秒前
科研通AI5应助golden采纳,获得10
5秒前
小二郎应助mochi采纳,获得10
6秒前
科研通AI6应助李木子采纳,获得10
6秒前
希望天下0贩的0应助朱朱采纳,获得10
6秒前
yi111发布了新的文献求助10
7秒前
祝我每日愉快完成签到 ,获得积分10
7秒前
爆米花应助12采纳,获得10
8秒前
斯文败类应助秣旎采纳,获得10
8秒前
眯眯眼的裙子完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
美好易烟发布了新的文献求助10
9秒前
mdJdm完成签到 ,获得积分10
9秒前
852应助小周采纳,获得10
9秒前
9秒前
10秒前
彭于晏应助笑点低的碧琴采纳,获得10
10秒前
周杰伦关注了科研通微信公众号
10秒前
诗琪发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835