亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual-view jointly learning improves personalized drug synergy prediction

对偶(语法数字) 计算机科学 药品 人工智能 机器学习 药理学 医学 艺术 文学类
作者
Xueliang Li,Bihan Shen,Fangyoumin Feng,Kunshi Li,Liangxiao Ma,Hong Li
标识
DOI:10.1101/2024.03.27.586892
摘要

Abstract Background Accurate and robust estimation of the synergistic drug combination is important for precision medicine. Although some computational methods have been developed, some predictions are still unreliable especially for the cross-dataset predictions, due to the complex mechanism of drug combinations and heterogeneity of cancer samples. Methods We have proposed JointSyn that utilizes dual-view jointly learning to predict sample-specific effects of drug combination from drug and cell features. JointSyn capture the drug synergy related features from two views. One view is the embedding of drug combination on cancer cell lines, and the other view is the combination of two drugs’ embeddings on cancer cell lines. Finally, the prediction net uses the features learned from the two views to predict the drug synergy of the drug combination on the cell line. In addition, we used the fine-tuning method to improve the JointSyn’s performance on the unseen subset within a dataset or cross dataset. Results JointSyn outperforms existing state-of-the-art methods in predictive accuracy and robustness across various benchmarks. Each view of JointSyn captures drug synergy-related characteristics and make complementary contributes to the final accurate prediction of drug combination. Moreover, JointSyn with fine-tuning improves its generalization ability to predict a novel drug combination or cancer sample only using a small number of experimental measurements. We also used JointSyn to generate an estimated atlas of drug synergy for pan-cancer and explored the differential pattern among cancers. Conclusions These results demonstrate the potential of JointSyn to predict drug synergy, supporting the development of personalized combinatorial therapies. The source code is available on GitHub at https://github.com/LiHongCSBLab/JointSyn .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marciu33发布了新的文献求助10
6秒前
8秒前
香蕉觅云应助ylh采纳,获得10
9秒前
Akim应助习惯过了头采纳,获得10
10秒前
王颖超发布了新的文献求助30
12秒前
BowieHuang应助小黑妞采纳,获得10
15秒前
19秒前
司空以蕊完成签到 ,获得积分10
19秒前
21秒前
23秒前
25秒前
ylh发布了新的文献求助10
26秒前
勤恳八宝粥完成签到 ,获得积分10
27秒前
抹茶发布了新的文献求助10
29秒前
yukky发布了新的文献求助10
32秒前
47秒前
49秒前
不言而喻应助Marciu33采纳,获得10
49秒前
49秒前
123发布了新的文献求助10
50秒前
魔幻的芳完成签到,获得积分10
50秒前
54秒前
火星上的宝马完成签到,获得积分10
54秒前
54秒前
54秒前
俏皮跳跳糖完成签到,获得积分10
55秒前
悲凉的忆南完成签到,获得积分10
57秒前
桃子e发布了新的文献求助10
58秒前
xiaxiao完成签到,获得积分0
59秒前
huan发布了新的文献求助10
1分钟前
陈旧完成签到,获得积分10
1分钟前
欣欣子完成签到,获得积分10
1分钟前
1分钟前
sunstar完成签到,获得积分10
1分钟前
72219发布了新的文献求助10
1分钟前
yxl完成签到,获得积分10
1分钟前
Jasper应助huan采纳,获得10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
烟消云散完成签到,获得积分10
1分钟前
cc完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780200
求助须知:如何正确求助?哪些是违规求助? 5653166
关于积分的说明 15452863
捐赠科研通 4910949
什么是DOI,文献DOI怎么找? 2643155
邀请新用户注册赠送积分活动 1590810
关于科研通互助平台的介绍 1545294