Dual-view jointly learning improves personalized drug synergy prediction

对偶(语法数字) 计算机科学 药品 人工智能 机器学习 药理学 医学 艺术 文学类
作者
Xueliang Li,Bihan Shen,Fangyoumin Feng,Kunshi Li,Liangxiao Ma,Hong Li
标识
DOI:10.1101/2024.03.27.586892
摘要

Abstract Background Accurate and robust estimation of the synergistic drug combination is important for precision medicine. Although some computational methods have been developed, some predictions are still unreliable especially for the cross-dataset predictions, due to the complex mechanism of drug combinations and heterogeneity of cancer samples. Methods We have proposed JointSyn that utilizes dual-view jointly learning to predict sample-specific effects of drug combination from drug and cell features. JointSyn capture the drug synergy related features from two views. One view is the embedding of drug combination on cancer cell lines, and the other view is the combination of two drugs’ embeddings on cancer cell lines. Finally, the prediction net uses the features learned from the two views to predict the drug synergy of the drug combination on the cell line. In addition, we used the fine-tuning method to improve the JointSyn’s performance on the unseen subset within a dataset or cross dataset. Results JointSyn outperforms existing state-of-the-art methods in predictive accuracy and robustness across various benchmarks. Each view of JointSyn captures drug synergy-related characteristics and make complementary contributes to the final accurate prediction of drug combination. Moreover, JointSyn with fine-tuning improves its generalization ability to predict a novel drug combination or cancer sample only using a small number of experimental measurements. We also used JointSyn to generate an estimated atlas of drug synergy for pan-cancer and explored the differential pattern among cancers. Conclusions These results demonstrate the potential of JointSyn to predict drug synergy, supporting the development of personalized combinatorial therapies. The source code is available on GitHub at https://github.com/LiHongCSBLab/JointSyn .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想搞事发布了新的文献求助10
刚刚
红红发布了新的文献求助10
刚刚
凹凸曼打小傻蛋完成签到 ,获得积分10
刚刚
刚刚
1秒前
danheng完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
神勇代荷完成签到,获得积分10
4秒前
王川发布了新的文献求助10
4秒前
bkagyin应助biyingxuan采纳,获得10
4秒前
在水一方应助阿池采纳,获得10
5秒前
jj发布了新的文献求助10
6秒前
allrubbish发布了新的文献求助10
6秒前
无限雨南完成签到,获得积分10
6秒前
Lance完成签到,获得积分10
6秒前
6秒前
黑豆也完成签到,获得积分10
7秒前
7秒前
自觉柠檬发布了新的文献求助10
7秒前
舒心毛衣发布了新的文献求助10
7秒前
领导范儿应助LiAlan采纳,获得10
7秒前
顾矜应助别喝他的酒采纳,获得10
9秒前
9秒前
氿瑛发布了新的文献求助10
9秒前
10秒前
11秒前
陈陈发布了新的文献求助10
11秒前
11秒前
害羞文博完成签到,获得积分10
12秒前
木马不旋转完成签到,获得积分10
12秒前
受伤冰菱完成签到,获得积分10
13秒前
徐京墨完成签到,获得积分10
13秒前
科目三应助JUN采纳,获得10
13秒前
花未开完成签到,获得积分10
13秒前
tanrui完成签到,获得积分10
13秒前
闪闪星星完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406