已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dual-view jointly learning improves personalized drug synergy prediction

对偶(语法数字) 计算机科学 药品 人工智能 机器学习 药理学 医学 艺术 文学类
作者
Xueliang Li,Bihan Shen,Fangyoumin Feng,Kunshi Li,Liangxiao Ma,Hong Li
标识
DOI:10.1101/2024.03.27.586892
摘要

Abstract Background Accurate and robust estimation of the synergistic drug combination is important for precision medicine. Although some computational methods have been developed, some predictions are still unreliable especially for the cross-dataset predictions, due to the complex mechanism of drug combinations and heterogeneity of cancer samples. Methods We have proposed JointSyn that utilizes dual-view jointly learning to predict sample-specific effects of drug combination from drug and cell features. JointSyn capture the drug synergy related features from two views. One view is the embedding of drug combination on cancer cell lines, and the other view is the combination of two drugs’ embeddings on cancer cell lines. Finally, the prediction net uses the features learned from the two views to predict the drug synergy of the drug combination on the cell line. In addition, we used the fine-tuning method to improve the JointSyn’s performance on the unseen subset within a dataset or cross dataset. Results JointSyn outperforms existing state-of-the-art methods in predictive accuracy and robustness across various benchmarks. Each view of JointSyn captures drug synergy-related characteristics and make complementary contributes to the final accurate prediction of drug combination. Moreover, JointSyn with fine-tuning improves its generalization ability to predict a novel drug combination or cancer sample only using a small number of experimental measurements. We also used JointSyn to generate an estimated atlas of drug synergy for pan-cancer and explored the differential pattern among cancers. Conclusions These results demonstrate the potential of JointSyn to predict drug synergy, supporting the development of personalized combinatorial therapies. The source code is available on GitHub at https://github.com/LiHongCSBLab/JointSyn .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luckylumia完成签到,获得积分10
1秒前
脑洞疼应助读书的时候采纳,获得30
2秒前
Ava应助旭滟采纳,获得10
2秒前
忘忧Aquarius完成签到,获得积分10
4秒前
Jasper应助害羞的振家采纳,获得10
5秒前
6秒前
7秒前
9秒前
9秒前
亚米发布了新的文献求助10
11秒前
HuTu完成签到 ,获得积分10
13秒前
14秒前
桐炫发布了新的文献求助10
14秒前
炙热的雨双完成签到 ,获得积分10
14秒前
Freddie发布了新的文献求助10
14秒前
16秒前
17秒前
17秒前
缥缈的背包完成签到 ,获得积分10
18秒前
wyx完成签到 ,获得积分10
18秒前
19秒前
20秒前
25778完成签到 ,获得积分10
21秒前
zbzfp发布了新的文献求助10
21秒前
亚米完成签到,获得积分10
22秒前
22秒前
24秒前
壮观的绿旋关注了科研通微信公众号
26秒前
26秒前
旭滟发布了新的文献求助10
27秒前
28秒前
CGFHEMAN完成签到 ,获得积分10
30秒前
可乐发布了新的文献求助10
32秒前
wanwan524完成签到 ,获得积分10
33秒前
Ambi发布了新的文献求助80
34秒前
35秒前
默默善愁完成签到,获得积分10
35秒前
旭滟完成签到,获得积分20
35秒前
慕青应助笑点低中心采纳,获得10
36秒前
乐观期待完成签到,获得积分10
37秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746340
求助须知:如何正确求助?哪些是违规求助? 5432754
关于积分的说明 15355163
捐赠科研通 4886241
什么是DOI,文献DOI怎么找? 2627141
邀请新用户注册赠送积分活动 1575625
关于科研通互助平台的介绍 1532338