制作
材料科学
能量转换效率
有机太阳能电池
光伏系统
纳米技术
活动层
图层(电子)
沉积(地质)
分子间力
光活性层
分子
自组装
光电子学
聚合物太阳能电池
化学
复合材料
薄膜晶体管
聚合物
有机化学
工程类
电气工程
医学
病理
替代医学
生物
古生物学
沉积物
作者
Zhihao Chen,Shaoqing Zhang,Tao Zhang,Jiangbo Dai,Yue Yu,Huixue Li,Xiaotao Hao,Jianhui Hou
出处
期刊:Joule
[Elsevier]
日期:2024-04-10
卷期号:8 (6): 1723-1734
被引量:6
标识
DOI:10.1016/j.joule.2024.03.013
摘要
The commercialization of organic solar cells (OSCs) encompasses overcoming hurdles related to efficiency, stability, cost, and complexity of device fabrication techniques. The elaborate sequential deposition (SD) process for fabricating charge-transport and photoactive layers stands out as a critical challenge. In this study, we synthesized a series of self-assembling hole-transport molecules, namely, BPC-M, BPC-Ph, and BPC-F, to investigate the mechanism within self-assembling deposition (SAD). The synthesized molecules in SAD-processed cells exhibit significantly varied photovoltaic performance. Notably, BPC-M achieves a superior power conversion efficiency of 19.3% in SAD-processed PBDB-TF:eC9 cells. However, cells incorporating BPC-F show significant performance degradation. It is demonstrated that the thermodynamic forces driven by surface free energy, coupled with intermolecular interactions, are pivotal in dictating the self-assembly efficiency. This determines the quality of the self-assembled layer and the residual molecule in the active layer. This study simplifies OSC fabrication and offers a promising approach for the industrialization of OSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI