The Influence of Hyperparameters of a Neural Network on the Augmented RANS Model Using Field Inversion and Machine Learning

超参数 计算机科学 反演(地质) 人工神经网络 人工智能 机器学习 雷诺平均Navier-Stokes方程 领域(数学) 地质学 工程类 数学 航空航天工程 古生物学 构造盆地 计算流体力学 纯数学
作者
Yue Tao,Chao Xia,Jianfeng Cai,Hua Zhou,Fanglin Shi,Z. Yang
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2530
摘要

<div class="section abstract"><div class="htmlview paragraph">In the field of vehicle aerodynamic simulation, Reynold Averaged Navier-Stokes (RANS) model is widely used due to its high efficiency. However, it has some limitations in capturing complex flow features and simulating large separated flows. In order to improve the computational accuracy within a suitable cost, the Field Inversion and Machine Learning (FIML) method, based on a data-driven approach, has received increasing attention in recent years. In this paper, the optimal coefficients of the Generalized <i>k-ω</i> (GEKO) model are firstly obtained by the discrete adjoint method of FIML, utilizing the results of wind tunnel experiments. Then, the mapping relationship between the flow field characteristics and the optimal coefficients is established by a neural network to augment the turbulence model. On the basis of that, the study further investigates the effects of hyperparameters such as epoch, batch size, activation function, and learning rate on the accuracy of the augmented GEKO model. The result shows that with the drag coefficient (<i>C<sub>D</sub></i>) as the target, batch size and activation function significantly influence the accuracy of the trained model. When a batch size of 512 and either Softsign or Leaky-ReLU activation function are employed, the trained model predicts <i>C<sub>D</sub></i> value closest to the experimental values in the condition of 2000 epochs and a learning rate of 0.001. Increasing the batch size to 1024 or the learning rate to 0.002 provides some improvement in model accuracy, but the effect is not obvious. This work is an important reference for the debugging and improvement of FIML method.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颖仔完成签到,获得积分10
1秒前
doin完成签到,获得积分10
1秒前
发一篇sci完成签到 ,获得积分10
1秒前
老实皮皮虾完成签到,获得积分10
2秒前
慕青应助石头采纳,获得10
3秒前
Kins完成签到,获得积分10
3秒前
清浅发布了新的文献求助20
3秒前
王五发布了新的文献求助10
3秒前
康康米其林完成签到,获得积分10
4秒前
4秒前
王小海111完成签到 ,获得积分10
4秒前
5秒前
A阿澍完成签到,获得积分10
5秒前
淡淡凌翠完成签到,获得积分10
5秒前
科研通AI2S应助FLZLC采纳,获得10
6秒前
anthea完成签到 ,获得积分10
6秒前
元气糖完成签到 ,获得积分10
6秒前
6秒前
7秒前
Sky完成签到,获得积分10
7秒前
7秒前
LL666完成签到 ,获得积分10
8秒前
8秒前
9秒前
顿立男完成签到,获得积分20
9秒前
xz完成签到 ,获得积分10
9秒前
10秒前
草莓味的榴莲完成签到,获得积分10
11秒前
儒雅的蜜粉完成签到,获得积分10
11秒前
小马甲应助chuyinweilai采纳,获得10
11秒前
mzhmhy发布了新的文献求助10
11秒前
缥缈冷安完成签到,获得积分10
12秒前
12秒前
丰富的小甜瓜完成签到,获得积分10
12秒前
星云完成签到 ,获得积分20
12秒前
怡然云朵发布了新的文献求助10
12秒前
高挑的寒松完成签到,获得积分10
13秒前
果实发布了新的文献求助10
13秒前
fwsfs发布了新的文献求助20
13秒前
刺猬发布了新的文献求助20
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118