重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

The Influence of Hyperparameters of a Neural Network on the Augmented RANS Model Using Field Inversion and Machine Learning

超参数 计算机科学 反演(地质) 人工神经网络 人工智能 机器学习 雷诺平均Navier-Stokes方程 领域(数学) 地质学 工程类 数学 航空航天工程 计算流体力学 构造盆地 古生物学 纯数学
作者
Yue Tao,Chao Xia,Jianfeng Cai,Hua Zhou,Fanglin Shi,Z. Yang
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2530
摘要

<div class="section abstract"><div class="htmlview paragraph">In the field of vehicle aerodynamic simulation, Reynold Averaged Navier-Stokes (RANS) model is widely used due to its high efficiency. However, it has some limitations in capturing complex flow features and simulating large separated flows. In order to improve the computational accuracy within a suitable cost, the Field Inversion and Machine Learning (FIML) method, based on a data-driven approach, has received increasing attention in recent years. In this paper, the optimal coefficients of the Generalized <i>k-ω</i> (GEKO) model are firstly obtained by the discrete adjoint method of FIML, utilizing the results of wind tunnel experiments. Then, the mapping relationship between the flow field characteristics and the optimal coefficients is established by a neural network to augment the turbulence model. On the basis of that, the study further investigates the effects of hyperparameters such as epoch, batch size, activation function, and learning rate on the accuracy of the augmented GEKO model. The result shows that with the drag coefficient (<i>C<sub>D</sub></i>) as the target, batch size and activation function significantly influence the accuracy of the trained model. When a batch size of 512 and either Softsign or Leaky-ReLU activation function are employed, the trained model predicts <i>C<sub>D</sub></i> value closest to the experimental values in the condition of 2000 epochs and a learning rate of 0.001. Increasing the batch size to 1024 or the learning rate to 0.002 provides some improvement in model accuracy, but the effect is not obvious. This work is an important reference for the debugging and improvement of FIML method.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mashibeo完成签到,获得积分0
1秒前
lzy完成签到,获得积分10
2秒前
可乐泡儿完成签到,获得积分10
3秒前
乐乐完成签到,获得积分10
3秒前
orixero应助虚幻的小海豚采纳,获得10
3秒前
胖小羊发布了新的文献求助10
3秒前
happen完成签到,获得积分10
5秒前
bkagyin应助居九九采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
Lesley发布了新的文献求助10
7秒前
7秒前
璐璐完成签到,获得积分20
7秒前
Dean应助lqqq采纳,获得50
8秒前
ding应助哇啦哇啦采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
奋斗映天发布了新的文献求助10
11秒前
Destiny完成签到,获得积分10
11秒前
12秒前
思源应助我就是柠檬精采纳,获得10
12秒前
Mmmm发布了新的文献求助10
12秒前
Yuan发布了新的文献求助10
13秒前
合适一斩发布了新的文献求助10
13秒前
14秒前
努力哥完成签到,获得积分10
15秒前
研友_xnEOX8完成签到,获得积分10
16秒前
1234关注了科研通微信公众号
16秒前
17秒前
17秒前
科研通AI6应助bao采纳,获得10
17秒前
puzhongjiMiQ发布了新的文献求助10
17秒前
vungocbinh完成签到,获得积分10
17秒前
19秒前
土豪的飞荷完成签到 ,获得积分10
19秒前
香蕉觅云应助奋斗映天采纳,获得10
19秒前
gengsumin完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468049
求助须知:如何正确求助?哪些是违规求助? 4571603
关于积分的说明 14330660
捐赠科研通 4498112
什么是DOI,文献DOI怎么找? 2464315
邀请新用户注册赠送积分活动 1453064
关于科研通互助平台的介绍 1427739