已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Influence of Hyperparameters of a Neural Network on the Augmented RANS Model Using Field Inversion and Machine Learning

超参数 计算机科学 反演(地质) 人工神经网络 人工智能 机器学习 雷诺平均Navier-Stokes方程 领域(数学) 地质学 工程类 数学 航空航天工程 计算流体力学 构造盆地 古生物学 纯数学
作者
Yue Tao,Chao Xia,Jianfeng Cai,Hua Zhou,Fanglin Shi,Z. Yang
出处
期刊:SAE technical paper series
标识
DOI:10.4271/2024-01-2530
摘要

<div class="section abstract"><div class="htmlview paragraph">In the field of vehicle aerodynamic simulation, Reynold Averaged Navier-Stokes (RANS) model is widely used due to its high efficiency. However, it has some limitations in capturing complex flow features and simulating large separated flows. In order to improve the computational accuracy within a suitable cost, the Field Inversion and Machine Learning (FIML) method, based on a data-driven approach, has received increasing attention in recent years. In this paper, the optimal coefficients of the Generalized <i>k-ω</i> (GEKO) model are firstly obtained by the discrete adjoint method of FIML, utilizing the results of wind tunnel experiments. Then, the mapping relationship between the flow field characteristics and the optimal coefficients is established by a neural network to augment the turbulence model. On the basis of that, the study further investigates the effects of hyperparameters such as epoch, batch size, activation function, and learning rate on the accuracy of the augmented GEKO model. The result shows that with the drag coefficient (<i>C<sub>D</sub></i>) as the target, batch size and activation function significantly influence the accuracy of the trained model. When a batch size of 512 and either Softsign or Leaky-ReLU activation function are employed, the trained model predicts <i>C<sub>D</sub></i> value closest to the experimental values in the condition of 2000 epochs and a learning rate of 0.001. Increasing the batch size to 1024 or the learning rate to 0.002 provides some improvement in model accuracy, but the effect is not obvious. This work is an important reference for the debugging and improvement of FIML method.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangai1011应助Tracy采纳,获得10
2秒前
雨相所至发布了新的文献求助10
2秒前
上好佳完成签到,获得积分10
4秒前
NattyPoe发布了新的文献求助10
4秒前
6秒前
xiaofeiyan发布了新的文献求助10
12秒前
JiegeSCI完成签到,获得积分10
12秒前
18秒前
夕夕成玦完成签到 ,获得积分10
18秒前
orixero应助啵啵小柚子采纳,获得10
19秒前
尹宝发布了新的文献求助10
22秒前
黄昏完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
英姑应助TTTYL采纳,获得30
24秒前
nanwan完成签到,获得积分10
24秒前
25秒前
26秒前
CodeCraft应助PanLi采纳,获得10
26秒前
26秒前
messi0731发布了新的文献求助10
27秒前
zhzhzh发布了新的文献求助10
28秒前
YTL2021完成签到,获得积分10
29秒前
tttt完成签到 ,获得积分10
29秒前
头上有犄角bb完成签到 ,获得积分10
30秒前
超超~完成签到,获得积分10
32秒前
32秒前
genomed应助xiekunwhy采纳,获得10
32秒前
32秒前
33秒前
会飞的猪发布了新的文献求助10
36秒前
着急的若魔完成签到,获得积分10
36秒前
xiaofeiyan发布了新的文献求助10
36秒前
36秒前
灵巧凡梅发布了新的文献求助30
36秒前
Shawn完成签到,获得积分10
36秒前
37秒前
37秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627458
求助须知:如何正确求助?哪些是违规求助? 4713928
关于积分的说明 14962390
捐赠科研通 4784838
什么是DOI,文献DOI怎么找? 2554884
邀请新用户注册赠送积分活动 1516380
关于科研通互助平台的介绍 1476702