Physics-inspired multimodal machine learning for adaptive correlation fusion based rotating machinery fault diagnosis

计算机科学 人工智能 断层(地质) 特征学习 机器学习 卷积神经网络 信息融合 地震学 地质学
作者
Dingyi Sun,Yongbo Li,Zheng Liu,Sixiang Jia,Khandaker Noman
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102394-102394 被引量:5
标识
DOI:10.1016/j.inffus.2024.102394
摘要

Multimodality is a universal characteristic of multi-source monitoring data for rotating machinery. The correlation fusion of multimodal information is a general law to strengthen the cognition of fault features, and an effective way to improve the reliability and robustness of fault diagnosis methods. However, the physical connotation gaps between multimodal information hinder the construction of correlations, preventing mainstream machine learning (ML) based intelligent diagnosis methods from reliably and effectively taking advantage of multimodal fusion. To address these issues, a physics-inspired multimodal fusion convolutional neural network (PMFN) is proposed in this paper. It is the first attempt to integrate physical knowledge into ML models to bridge physical connotation gaps between multimodal fault information. Specifically, the characterization patterns of rotating machinery fault in multimodal information are embedded in the attention mechanism to focus on representative fault features with physical properties, and generate the universal representation of multimodal information. Furthermore, the cross-modal correlation fusion module is introduced to adaptively construct the correlations of multimodal information, thereby highlighting the unique feature of unimodal information and the shared representation of multimodal information. Finally, the superiority of the proposed fusion method is verified by two cases of industrial gearbox and bearing-rotor system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助wangn采纳,获得10
刚刚
Mid完成签到,获得积分20
刚刚
共享精神应助Morgenstern_ZH采纳,获得10
刚刚
刚刚
刚刚
搞怪画笔完成签到 ,获得积分10
刚刚
皇城有饭局完成签到,获得积分10
刚刚
lvanlvan完成签到,获得积分10
刚刚
哲999发布了新的文献求助10
1秒前
Jadie完成签到,获得积分10
1秒前
1秒前
morlison发布了新的文献求助10
1秒前
1秒前
无花果应助佳佳采纳,获得10
1秒前
无花果应助nn采纳,获得10
2秒前
置默完成签到,获得积分10
2秒前
gww完成签到,获得积分20
3秒前
zhmyjk发布了新的文献求助60
3秒前
MADKAI发布了新的文献求助20
3秒前
3秒前
隐形曼青应助gaos采纳,获得10
3秒前
侦察兵发布了新的文献求助10
4秒前
JamesPei应助科研小小小白采纳,获得10
4秒前
4秒前
yaqin@9909完成签到,获得积分10
4秒前
嗨JL完成签到,获得积分10
4秒前
帅玉玉发布了新的文献求助10
4秒前
鳗鱼冰薇完成签到 ,获得积分10
6秒前
tanjianxin发布了新的文献求助10
6秒前
7秒前
霸王龙完成签到,获得积分10
7秒前
7秒前
7秒前
细心映寒发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
8秒前
8秒前
安静的雨完成签到,获得积分10
8秒前
9秒前
9秒前
liu完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759