Insights into the transformation of natural organic matter during UV/peroxydisulfate treatment by FT-ICR MS and machine learning: Non-negligible formation of organosulfates

化学 过氧二硫酸盐 天然有机质 转化(遗传学) 水处理 环境科学 有机质 环境工程 环境化学 有机化学 基因 生物化学 催化作用
作者
Junfang Li,Wenlei Qin,Bao Zhu,Ting Ruan,Zhechao Hua,Hongyu Du,Shengkun Dong,Jingyun Fang
出处
期刊:Water Research [Elsevier]
卷期号:256: 121564-121564 被引量:2
标识
DOI:10.1016/j.watres.2024.121564
摘要

Natural organic matter (NOM) is a major sink of radicals in advanced oxidation processes (AOPs) and understanding the transformation of NOM is important in water treatment. By using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in conjunction with machine learning, we comprehensively investigated the reactivity and transformation of NOM, and the formation of organosulfates during the UV/peroxydisulfate (PDS) process. After 60 min UV/PDS treatment, the CHO formula number and dissolved organic carbon concentration significantly decreased by 83.4 % and 74.8 %, respectively. Concurrently, the CHOS formula number increased substantially from 0.7 % to 20.5 %. Machine learning identifies DBE and AImod as the critical characteristics determining the reactivity of NOM during UV/PDS treatment. Furthermore, linkage analysis suggests that decarboxylation and dealkylation reactions are dominant transformation pathways, while the additions of SO3 and SO4 are also non-negligible. According to SHAP analysis, the m/z, number of oxygens, DBE and O/C of NOM were positively correlated with the formation of organosulfates in UV/PDS process. 92 organosulfates were screened out by precursor ion scan of HPLC-MS/MS and verified by UPLC-Q-TOF-MS, among which, 7 organosufates were quantified by authentic standards with the highest concentrations ranging from 2.1 to 203.0 ng L‒1. In addition, the cytotoxicity of NOM to Chinese Hamster Ovary (CHO) cells increased by 13.8 % after 30 min UV/PDS treatment, likely responsible for the formation of organosulfates. This is the first study to employ FT-ICR MS combined with machine learning to identify the dominant NOM properties affecting its reactivity and confirmed the formation of organosulfates from sulfate radical oxidation of NOM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小瑞儿完成签到 ,获得积分10
1秒前
3秒前
李爱国应助小吴同志采纳,获得10
6秒前
薰硝壤应助失眠的血茗采纳,获得10
6秒前
不配.应助小吴同志采纳,获得10
6秒前
嘉博学长发布了新的文献求助10
7秒前
如意的乐天应助李燕君采纳,获得10
7秒前
10秒前
科研通AI2S应助lzc采纳,获得10
11秒前
13秒前
包子牛奶发布了新的文献求助10
19秒前
kkkkkk发布了新的文献求助10
25秒前
何博洋完成签到,获得积分10
26秒前
可爱的函函应助粗暴的遥采纳,获得10
26秒前
yjw发布了新的文献求助10
27秒前
脑洞疼应助kang12采纳,获得10
33秒前
伶俐的冰之完成签到,获得积分10
35秒前
亦巧完成签到,获得积分20
36秒前
39秒前
soapffz完成签到,获得积分10
43秒前
小吴同志完成签到,获得积分10
44秒前
畅快不平发布了新的文献求助10
46秒前
隐形紫萍发布了新的文献求助10
48秒前
49秒前
斯文败类应助zwenng采纳,获得10
50秒前
哈哈哈哈完成签到 ,获得积分10
51秒前
CodeCraft应助胡桃夹馍采纳,获得10
51秒前
53秒前
pragmatic发布了新的文献求助10
54秒前
何仙姑完成签到 ,获得积分10
55秒前
爱撒娇的孤丹完成签到 ,获得积分10
56秒前
56秒前
风趣烧鹅完成签到,获得积分10
56秒前
激动的猫咪完成签到,获得积分20
57秒前
Charon发布了新的文献求助10
57秒前
怕黑访云完成签到,获得积分10
59秒前
yanjiusheng完成签到,获得积分10
1分钟前
zwenng发布了新的文献求助10
1分钟前
受伤破茧完成签到,获得积分10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141402
求助须知:如何正确求助?哪些是违规求助? 2792438
关于积分的说明 7802634
捐赠科研通 2448628
什么是DOI,文献DOI怎么找? 1302644
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237