Construction of environmental vibration prediction model for subway transportation based on machine learning algorithm and database technology

振动 计算机科学 算法 价值(数学) 近似误差 人工智能 模拟 机器学习 声学 物理
作者
Xilong Zhou
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-56940-3
摘要

Vibrations generated in the metro transport environment are mainly caused by, vibrations generated by the interaction between the metro and the track during operation. and the change of vibration factors will affect the normal operation of the subway. However, it is difficult to have a model that can achieve the characteristics of high accuracy, fast computing speed and wide range of use in the traditional metro rail transportation environment prediction. Therefore, this research uses database theory and machine learning algorithms to predict the vibration of subway transportation environment. The experimental results show that the average difference between the whole prediction value and the real value is 1.4 dB, of which the maximum difference error value is 0.29%, the maximum error difference is 8.2%, and the approximate value is 6.2 dB, and the four averages predicted in 40 m are relatively small as 1.6 dB, and the average error value of prediction ability between 40 and 100 m is 1.72 dB, and the experimental prediction value and real value are in good agreement. The agreement between the experimental prediction and the real value is very good. Therefore, the model is able to predict the vibration model of the subway transportation environment with a high degree of agreement and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王里走发布了新的文献求助10
刚刚
拾一完成签到,获得积分10
1秒前
YHY完成签到,获得积分10
1秒前
研友_LmVqmn发布了新的文献求助10
1秒前
隐形曼青应助vvv采纳,获得30
2秒前
斑比发布了新的文献求助10
2秒前
OMR123发布了新的文献求助10
3秒前
4秒前
汉堡包应助QLR采纳,获得10
4秒前
biov发布了新的文献求助10
5秒前
aa完成签到,获得积分10
5秒前
謃河鷺起完成签到,获得积分10
5秒前
万能图书馆应助甜滋滋采纳,获得10
5秒前
6秒前
坚强的严青应助我叫胖子采纳,获得30
6秒前
在水一方应助重要问芙brk采纳,获得10
7秒前
7秒前
tramp应助LZY采纳,获得10
8秒前
科研通AI2S应助陌路孤星采纳,获得10
8秒前
Jamiter发布了新的文献求助30
9秒前
nanfang完成签到 ,获得积分10
10秒前
华仔应助jin1233采纳,获得10
11秒前
研友_LmVqmn完成签到,获得积分10
11秒前
12秒前
12秒前
Lucia发布了新的文献求助10
12秒前
852应助嗯哼采纳,获得10
12秒前
Mz完成签到,获得积分10
13秒前
今后应助幽篁采纳,获得30
14秒前
14秒前
Cyrus2022完成签到,获得积分10
16秒前
16秒前
winni完成签到,获得积分10
17秒前
Grinder发布了新的文献求助10
17秒前
甜滋滋发布了新的文献求助10
18秒前
文档发布了新的文献求助10
18秒前
wuhu完成签到,获得积分20
18秒前
19秒前
天天快乐应助淡定小蜜蜂采纳,获得10
19秒前
oydent完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160145
求助须知:如何正确求助?哪些是违规求助? 2811106
关于积分的说明 7891067
捐赠科研通 2470194
什么是DOI,文献DOI怎么找? 1315360
科研通“疑难数据库(出版商)”最低求助积分说明 630822
版权声明 602022