重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

GraphECC: Enhancing GraphSMOTE with enhanced complementary classifier

分类器(UML) 计算机科学 人工智能
作者
Liwen Xu,Jiali Chen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-239663
摘要

Node classification in graph learning faces significant challenges due to imbalanced data, particularly for under-represented samples from minority classes. To address this issue, existing methods often rely on synthetic minority over-sampling techniques, introducing additional complexity during model training. In light of the challenges faced, we introduce GraphECC, an innovative approach that addresses numerical anomalies in large-scale datasets by supplanting the traditional CE loss function with an Enhanced Complementary Classifier (ECC) loss function’a novel modification to the CCE loss. This alteration ensures computational stability and mitigates potential numerical anomalies by incorporating a slight offset in the denominator during the computation of the complementary probability distribution. In this paper, we present a novel training paradigm, the Enhanced Complementary Classifier (ECC), which offers “imbalance defense for free” without the need for extra procedures to improve node classification accuracy.The ECC approach optimizes model probabilities for the ground-truth class, akin to the cross-entropy method. Additionally, it effectively neutralizes probabilities associated with incorrect classes through a “guided” term, achieving a balanced trade-off between the two aspects. Experimental results demonstrate that our proposed method not only enhances model robustness but also surpasses the widely used cross-entropy training objective.Moreover, we demonstrate the versatility of our method by seamlessly integrating it with various well-known adversarial training techniques, resulting in significant gains in robustness. Notably, our approach represents a breakthrough, as it enhances model robustness without compromising performance, distinguishing it from previous attempts.The code for GraphECC can be accessed from the following link:https://github.com/12chen20/GraphECC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樂楽发布了新的文献求助10
刚刚
1秒前
lan完成签到,获得积分10
2秒前
脑洞疼应助wyr采纳,获得10
2秒前
慕青应助木槿采纳,获得10
3秒前
3秒前
callmecjh发布了新的文献求助10
3秒前
4秒前
JAYZHANG完成签到,获得积分10
4秒前
5秒前
菜鸟学术人完成签到 ,获得积分10
5秒前
浮游应助枫沐临采纳,获得10
5秒前
qinjiehm发布了新的文献求助10
6秒前
大模型应助CTT采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
怡然的怜烟完成签到,获得积分0
8秒前
畅快黎昕完成签到 ,获得积分10
8秒前
大帅哥发布了新的文献求助10
8秒前
8秒前
Orange应助fuyg采纳,获得10
9秒前
9秒前
傲娇问晴发布了新的文献求助10
10秒前
打打应助xiaostou采纳,获得10
10秒前
浮游应助可靠月亮采纳,获得10
10秒前
11秒前
11秒前
gjn完成签到,获得积分10
11秒前
小聖完成签到 ,获得积分10
12秒前
qomolangma完成签到,获得积分10
12秒前
Lucas应助wang采纳,获得10
12秒前
xunuo完成签到,获得积分10
12秒前
生生完成签到,获得积分10
12秒前
CXS完成签到,获得积分10
13秒前
14秒前
Ying发布了新的文献求助10
14秒前
樂楽完成签到,获得积分10
15秒前
15秒前
LTHT发布了新的文献求助10
15秒前
gjn发布了新的文献求助10
16秒前
tangz发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465680
求助须知:如何正确求助?哪些是违规求助? 4570071
关于积分的说明 14321831
捐赠科研通 4496440
什么是DOI,文献DOI怎么找? 2463336
邀请新用户注册赠送积分活动 1452253
关于科研通互助平台的介绍 1427489