GraphECC: Enhancing GraphSMOTE with enhanced complementary classifier

分类器(UML) 计算机科学 人工智能
作者
Liwen Xu,Jiali Chen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-239663
摘要

Node classification in graph learning faces significant challenges due to imbalanced data, particularly for under-represented samples from minority classes. To address this issue, existing methods often rely on synthetic minority over-sampling techniques, introducing additional complexity during model training. In light of the challenges faced, we introduce GraphECC, an innovative approach that addresses numerical anomalies in large-scale datasets by supplanting the traditional CE loss function with an Enhanced Complementary Classifier (ECC) loss function’a novel modification to the CCE loss. This alteration ensures computational stability and mitigates potential numerical anomalies by incorporating a slight offset in the denominator during the computation of the complementary probability distribution. In this paper, we present a novel training paradigm, the Enhanced Complementary Classifier (ECC), which offers “imbalance defense for free” without the need for extra procedures to improve node classification accuracy.The ECC approach optimizes model probabilities for the ground-truth class, akin to the cross-entropy method. Additionally, it effectively neutralizes probabilities associated with incorrect classes through a “guided” term, achieving a balanced trade-off between the two aspects. Experimental results demonstrate that our proposed method not only enhances model robustness but also surpasses the widely used cross-entropy training objective.Moreover, we demonstrate the versatility of our method by seamlessly integrating it with various well-known adversarial training techniques, resulting in significant gains in robustness. Notably, our approach represents a breakthrough, as it enhances model robustness without compromising performance, distinguishing it from previous attempts.The code for GraphECC can be accessed from the following link:https://github.com/12chen20/GraphECC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shelly发布了新的文献求助10
刚刚
thomas发布了新的文献求助10
1秒前
1秒前
孙浩洋完成签到,获得积分10
3秒前
3秒前
友好惜雪完成签到 ,获得积分10
3秒前
SciGPT应助mumu采纳,获得10
4秒前
4秒前
5秒前
FashionBoy应助王剑采纳,获得10
5秒前
小二郎应助LXY采纳,获得10
6秒前
7秒前
君君发布了新的文献求助10
7秒前
健壮魂幽完成签到,获得积分20
7秒前
李爱国应助thomas采纳,获得10
8秒前
正直沧海发布了新的文献求助10
8秒前
21发布了新的文献求助10
10秒前
10秒前
Akim应助最好的我们采纳,获得10
10秒前
8R60d8完成签到,获得积分0
10秒前
xz发布了新的文献求助10
11秒前
华仔应助Felixsun采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
任婷发布了新的文献求助10
13秒前
任婷发布了新的文献求助10
13秒前
任婷发布了新的文献求助10
13秒前
RedBoy发布了新的文献求助10
13秒前
正直沧海完成签到,获得积分20
15秒前
thomas完成签到,获得积分10
15秒前
无花果应助听见采纳,获得10
15秒前
RSC发布了新的文献求助10
15秒前
kaerless发布了新的文献求助10
15秒前
16秒前
科研笨猪完成签到,获得积分10
16秒前
洞若观烟火完成签到,获得积分10
18秒前
pp发布了新的文献求助10
20秒前
林勇德完成签到,获得积分10
20秒前
21秒前
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453924
求助须知:如何正确求助?哪些是违规求助? 4561398
关于积分的说明 14282445
捐赠科研通 4485367
什么是DOI,文献DOI怎么找? 2456697
邀请新用户注册赠送积分活动 1447383
关于科研通互助平台的介绍 1422701