GraphECC: Enhancing GraphSMOTE with enhanced complementary classifier

分类器(UML) 计算机科学 人工智能
作者
Liwen Xu,Jiali Chen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-239663
摘要

Node classification in graph learning faces significant challenges due to imbalanced data, particularly for under-represented samples from minority classes. To address this issue, existing methods often rely on synthetic minority over-sampling techniques, introducing additional complexity during model training. In light of the challenges faced, we introduce GraphECC, an innovative approach that addresses numerical anomalies in large-scale datasets by supplanting the traditional CE loss function with an Enhanced Complementary Classifier (ECC) loss function’a novel modification to the CCE loss. This alteration ensures computational stability and mitigates potential numerical anomalies by incorporating a slight offset in the denominator during the computation of the complementary probability distribution. In this paper, we present a novel training paradigm, the Enhanced Complementary Classifier (ECC), which offers “imbalance defense for free” without the need for extra procedures to improve node classification accuracy.The ECC approach optimizes model probabilities for the ground-truth class, akin to the cross-entropy method. Additionally, it effectively neutralizes probabilities associated with incorrect classes through a “guided” term, achieving a balanced trade-off between the two aspects. Experimental results demonstrate that our proposed method not only enhances model robustness but also surpasses the widely used cross-entropy training objective.Moreover, we demonstrate the versatility of our method by seamlessly integrating it with various well-known adversarial training techniques, resulting in significant gains in robustness. Notably, our approach represents a breakthrough, as it enhances model robustness without compromising performance, distinguishing it from previous attempts.The code for GraphECC can be accessed from the following link:https://github.com/12chen20/GraphECC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助柠檬采纳,获得10
2秒前
荔枝发布了新的文献求助10
2秒前
Ava应助柠檬采纳,获得10
2秒前
秋夏山完成签到,获得积分10
3秒前
阔达博完成签到,获得积分10
3秒前
3秒前
贪吃的懒羊羊完成签到,获得积分10
4秒前
RenHP完成签到,获得积分10
4秒前
6秒前
乐乐应助阔达博采纳,获得10
6秒前
开心超人完成签到 ,获得积分10
7秒前
7秒前
科目三应助烂漫的弼采纳,获得10
8秒前
星辰大海应助年轻的烧鹅采纳,获得10
8秒前
星辰大海应助meng采纳,获得10
9秒前
9秒前
liuliu发布了新的文献求助10
9秒前
10秒前
山竹完成签到 ,获得积分10
10秒前
range完成签到,获得积分10
10秒前
11秒前
鸣笛应助荔枝采纳,获得10
12秒前
echo完成签到,获得积分20
13秒前
英俊的铭应助badada采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
李延辉发布了新的文献求助10
16秒前
吕敬瑶完成签到,获得积分10
16秒前
17秒前
累了就休息不是放弃完成签到,获得积分10
17秒前
有足量NaCl发布了新的文献求助10
17秒前
木头木子发布了新的文献求助10
18秒前
木子完成签到,获得积分10
18秒前
19秒前
Hoyshin应助ys采纳,获得20
19秒前
科研通AI5应助4564321采纳,获得30
19秒前
20秒前
21秒前
烟花应助温茶采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602181
求助须知:如何正确求助?哪些是违规求助? 4011609
关于积分的说明 12419641
捐赠科研通 3691701
什么是DOI,文献DOI怎么找? 2035278
邀请新用户注册赠送积分活动 1068494
科研通“疑难数据库(出版商)”最低求助积分说明 953025