GraphECC: Enhancing GraphSMOTE with enhanced complementary classifier

分类器(UML) 计算机科学 人工智能
作者
Liwen Xu,Jiali Chen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-239663
摘要

Node classification in graph learning faces significant challenges due to imbalanced data, particularly for under-represented samples from minority classes. To address this issue, existing methods often rely on synthetic minority over-sampling techniques, introducing additional complexity during model training. In light of the challenges faced, we introduce GraphECC, an innovative approach that addresses numerical anomalies in large-scale datasets by supplanting the traditional CE loss function with an Enhanced Complementary Classifier (ECC) loss function’a novel modification to the CCE loss. This alteration ensures computational stability and mitigates potential numerical anomalies by incorporating a slight offset in the denominator during the computation of the complementary probability distribution. In this paper, we present a novel training paradigm, the Enhanced Complementary Classifier (ECC), which offers “imbalance defense for free” without the need for extra procedures to improve node classification accuracy.The ECC approach optimizes model probabilities for the ground-truth class, akin to the cross-entropy method. Additionally, it effectively neutralizes probabilities associated with incorrect classes through a “guided” term, achieving a balanced trade-off between the two aspects. Experimental results demonstrate that our proposed method not only enhances model robustness but also surpasses the widely used cross-entropy training objective.Moreover, we demonstrate the versatility of our method by seamlessly integrating it with various well-known adversarial training techniques, resulting in significant gains in robustness. Notably, our approach represents a breakthrough, as it enhances model robustness without compromising performance, distinguishing it from previous attempts.The code for GraphECC can be accessed from the following link:https://github.com/12chen20/GraphECC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
godccc完成签到,获得积分10
1秒前
鲈鱼发布了新的文献求助10
1秒前
2秒前
在水一方应助新一采纳,获得10
3秒前
美满忆文发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
xxb发布了新的文献求助10
4秒前
5秒前
5秒前
一二三完成签到,获得积分20
5秒前
嘻嘻哈哈应助veggieg采纳,获得20
6秒前
粗犷的沛容应助veggieg采纳,获得50
6秒前
大个应助veggieg采纳,获得10
6秒前
嘻嘻哈哈应助veggieg采纳,获得20
6秒前
无花果应助veggieg采纳,获得10
6秒前
6秒前
CodeCraft应助veggieg采纳,获得10
6秒前
6秒前
慕青应助veggieg采纳,获得10
6秒前
粗犷的沛容应助veggieg采纳,获得50
6秒前
科研通AI6应助echo采纳,获得10
7秒前
浮游应助研友_ZA7B7L采纳,获得10
7秒前
7秒前
小帅发布了新的文献求助10
7秒前
哈哈哈哈完成签到,获得积分10
8秒前
viauue9完成签到,获得积分10
8秒前
dynamoo应助YUJIALING采纳,获得10
8秒前
YYY发布了新的文献求助10
9秒前
乘风完成签到 ,获得积分10
9秒前
淡蓝时光完成签到,获得积分10
9秒前
1111发布了新的文献求助10
9秒前
caffeine发布了新的文献求助10
9秒前
赘婿应助柒染采纳,获得10
10秒前
___赵发布了新的文献求助10
10秒前
我是老大应助蒸馏水采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812