GraphECC: Enhancing GraphSMOTE with enhanced complementary classifier

分类器(UML) 计算机科学 人工智能
作者
Liwen Xu,Jiali Chen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-239663
摘要

Node classification in graph learning faces significant challenges due to imbalanced data, particularly for under-represented samples from minority classes. To address this issue, existing methods often rely on synthetic minority over-sampling techniques, introducing additional complexity during model training. In light of the challenges faced, we introduce GraphECC, an innovative approach that addresses numerical anomalies in large-scale datasets by supplanting the traditional CE loss function with an Enhanced Complementary Classifier (ECC) loss function’a novel modification to the CCE loss. This alteration ensures computational stability and mitigates potential numerical anomalies by incorporating a slight offset in the denominator during the computation of the complementary probability distribution. In this paper, we present a novel training paradigm, the Enhanced Complementary Classifier (ECC), which offers “imbalance defense for free” without the need for extra procedures to improve node classification accuracy.The ECC approach optimizes model probabilities for the ground-truth class, akin to the cross-entropy method. Additionally, it effectively neutralizes probabilities associated with incorrect classes through a “guided” term, achieving a balanced trade-off between the two aspects. Experimental results demonstrate that our proposed method not only enhances model robustness but also surpasses the widely used cross-entropy training objective.Moreover, we demonstrate the versatility of our method by seamlessly integrating it with various well-known adversarial training techniques, resulting in significant gains in robustness. Notably, our approach represents a breakthrough, as it enhances model robustness without compromising performance, distinguishing it from previous attempts.The code for GraphECC can be accessed from the following link:https://github.com/12chen20/GraphECC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崔铭哲发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
李健应助yangmi采纳,获得10
2秒前
2秒前
blueskyzhi发布了新的文献求助10
3秒前
ZhaoY发布了新的文献求助10
3秒前
4秒前
taotao发布了新的文献求助10
4秒前
5秒前
我的天呐发布了新的文献求助10
5秒前
Lucas应助英和路雪采纳,获得10
5秒前
5秒前
5秒前
shenxiaohui发布了新的文献求助10
5秒前
6秒前
柳煜城发布了新的文献求助100
6秒前
7秒前
7秒前
fancoco完成签到,获得积分10
7秒前
爆米花应助bangeyi采纳,获得10
7秒前
领导范儿应助wei采纳,获得20
7秒前
Renko完成签到,获得积分10
7秒前
8秒前
sam完成签到,获得积分10
8秒前
早日毕业佳完成签到,获得积分10
8秒前
9秒前
小船完成签到,获得积分10
9秒前
9秒前
9秒前
英姑应助追光少年采纳,获得10
9秒前
9秒前
星辰大海应助煎饼采纳,获得10
9秒前
11秒前
12秒前
Arno发布了新的文献求助10
12秒前
Renko发布了新的文献求助10
13秒前
哈哈哈发布了新的文献求助20
13秒前
charles完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167192
求助须知:如何正确求助?哪些是违规求助? 4359127
关于积分的说明 13572359
捐赠科研通 4205589
什么是DOI,文献DOI怎么找? 2306477
邀请新用户注册赠送积分活动 1306190
关于科研通互助平台的介绍 1252700