GraphECC: Enhancing GraphSMOTE with enhanced complementary classifier

分类器(UML) 计算机科学 人工智能
作者
Liwen Xu,Jiali Chen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-239663
摘要

Node classification in graph learning faces significant challenges due to imbalanced data, particularly for under-represented samples from minority classes. To address this issue, existing methods often rely on synthetic minority over-sampling techniques, introducing additional complexity during model training. In light of the challenges faced, we introduce GraphECC, an innovative approach that addresses numerical anomalies in large-scale datasets by supplanting the traditional CE loss function with an Enhanced Complementary Classifier (ECC) loss function’a novel modification to the CCE loss. This alteration ensures computational stability and mitigates potential numerical anomalies by incorporating a slight offset in the denominator during the computation of the complementary probability distribution. In this paper, we present a novel training paradigm, the Enhanced Complementary Classifier (ECC), which offers “imbalance defense for free” without the need for extra procedures to improve node classification accuracy.The ECC approach optimizes model probabilities for the ground-truth class, akin to the cross-entropy method. Additionally, it effectively neutralizes probabilities associated with incorrect classes through a “guided” term, achieving a balanced trade-off between the two aspects. Experimental results demonstrate that our proposed method not only enhances model robustness but also surpasses the widely used cross-entropy training objective.Moreover, we demonstrate the versatility of our method by seamlessly integrating it with various well-known adversarial training techniques, resulting in significant gains in robustness. Notably, our approach represents a breakthrough, as it enhances model robustness without compromising performance, distinguishing it from previous attempts.The code for GraphECC can be accessed from the following link:https://github.com/12chen20/GraphECC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助大枣儿采纳,获得10
刚刚
2秒前
美丽老三完成签到,获得积分20
3秒前
开心元霜完成签到,获得积分10
3秒前
Ivy完成签到,获得积分10
3秒前
3秒前
4秒前
哦哦哦发布了新的文献求助10
5秒前
yongyou完成签到,获得积分20
6秒前
7秒前
美丽老三发布了新的文献求助10
7秒前
7秒前
hdcf发布了新的文献求助10
10秒前
玉玉发布了新的文献求助10
10秒前
aldehyde应助XYL采纳,获得10
10秒前
希望天下0贩的0应助惠胜采纳,获得10
11秒前
11秒前
倪倪发布了新的文献求助10
12秒前
13秒前
小郑发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
hanshiyi完成签到,获得积分10
17秒前
斯文败类应助yongyou采纳,获得10
17秒前
18秒前
chansey发布了新的文献求助10
18秒前
XYL发布了新的文献求助10
19秒前
所所应助白色梨花采纳,获得10
21秒前
wanci应助蟪蛄鸪采纳,获得10
21秒前
hdcf发布了新的文献求助10
22秒前
WangXiaoze发布了新的文献求助10
22秒前
22秒前
顾矜应助日笙采纳,获得10
22秒前
黎夜完成签到,获得积分10
23秒前
机灵的怀绿完成签到,获得积分10
25秒前
my驳回了科目三应助
25秒前
26秒前
27秒前
可爱奇异果完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320711
求助须知:如何正确求助?哪些是违规求助? 4462526
关于积分的说明 13887138
捐赠科研通 4353537
什么是DOI,文献DOI怎么找? 2391240
邀请新用户注册赠送积分活动 1384892
关于科研通互助平台的介绍 1354655