GraphECC: Enhancing GraphSMOTE with enhanced complementary classifier

分类器(UML) 计算机科学 人工智能
作者
Liwen Xu,Jiali Chen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-239663
摘要

Node classification in graph learning faces significant challenges due to imbalanced data, particularly for under-represented samples from minority classes. To address this issue, existing methods often rely on synthetic minority over-sampling techniques, introducing additional complexity during model training. In light of the challenges faced, we introduce GraphECC, an innovative approach that addresses numerical anomalies in large-scale datasets by supplanting the traditional CE loss function with an Enhanced Complementary Classifier (ECC) loss function’a novel modification to the CCE loss. This alteration ensures computational stability and mitigates potential numerical anomalies by incorporating a slight offset in the denominator during the computation of the complementary probability distribution. In this paper, we present a novel training paradigm, the Enhanced Complementary Classifier (ECC), which offers “imbalance defense for free” without the need for extra procedures to improve node classification accuracy.The ECC approach optimizes model probabilities for the ground-truth class, akin to the cross-entropy method. Additionally, it effectively neutralizes probabilities associated with incorrect classes through a “guided” term, achieving a balanced trade-off between the two aspects. Experimental results demonstrate that our proposed method not only enhances model robustness but also surpasses the widely used cross-entropy training objective.Moreover, we demonstrate the versatility of our method by seamlessly integrating it with various well-known adversarial training techniques, resulting in significant gains in robustness. Notably, our approach represents a breakthrough, as it enhances model robustness without compromising performance, distinguishing it from previous attempts.The code for GraphECC can be accessed from the following link:https://github.com/12chen20/GraphECC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhangLetian关注了科研通微信公众号
刚刚
苏苏完成签到,获得积分10
刚刚
zhangqin完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
整齐的曼安完成签到,获得积分10
2秒前
2秒前
2秒前
小青椒应助1m4采纳,获得20
2秒前
2秒前
浅眸流年完成签到,获得积分10
2秒前
打打应助枳8705采纳,获得10
2秒前
2秒前
搜集达人应助Sthwrong采纳,获得10
3秒前
汉堡包应助无敌鱼采纳,获得10
3秒前
严好香完成签到 ,获得积分10
3秒前
林雨发布了新的文献求助10
3秒前
董泽云发布了新的文献求助10
4秒前
ttqql发布了新的文献求助10
4秒前
寒塘发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
浮游应助研友_nVNBVn采纳,获得10
7秒前
7秒前
monster0101发布了新的文献求助80
7秒前
7秒前
HAO发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
浅色凉生发布了新的文献求助10
9秒前
yaruyou发布了新的文献求助10
9秒前
scl发布了新的文献求助10
10秒前
安静幻枫完成签到,获得积分0
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569