GraphECC: Enhancing GraphSMOTE with enhanced complementary classifier

分类器(UML) 计算机科学 人工智能
作者
Liwen Xu,Jiali Chen
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-13
标识
DOI:10.3233/jifs-239663
摘要

Node classification in graph learning faces significant challenges due to imbalanced data, particularly for under-represented samples from minority classes. To address this issue, existing methods often rely on synthetic minority over-sampling techniques, introducing additional complexity during model training. In light of the challenges faced, we introduce GraphECC, an innovative approach that addresses numerical anomalies in large-scale datasets by supplanting the traditional CE loss function with an Enhanced Complementary Classifier (ECC) loss function’a novel modification to the CCE loss. This alteration ensures computational stability and mitigates potential numerical anomalies by incorporating a slight offset in the denominator during the computation of the complementary probability distribution. In this paper, we present a novel training paradigm, the Enhanced Complementary Classifier (ECC), which offers “imbalance defense for free” without the need for extra procedures to improve node classification accuracy.The ECC approach optimizes model probabilities for the ground-truth class, akin to the cross-entropy method. Additionally, it effectively neutralizes probabilities associated with incorrect classes through a “guided” term, achieving a balanced trade-off between the two aspects. Experimental results demonstrate that our proposed method not only enhances model robustness but also surpasses the widely used cross-entropy training objective.Moreover, we demonstrate the versatility of our method by seamlessly integrating it with various well-known adversarial training techniques, resulting in significant gains in robustness. Notably, our approach represents a breakthrough, as it enhances model robustness without compromising performance, distinguishing it from previous attempts.The code for GraphECC can be accessed from the following link:https://github.com/12chen20/GraphECC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小南孩完成签到,获得积分10
3秒前
脑洞疼应助普鲁卡因采纳,获得10
9秒前
zhaoyaoshi完成签到 ,获得积分10
9秒前
chiazy完成签到,获得积分10
10秒前
智慧金刚完成签到 ,获得积分10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
迪鸣完成签到,获得积分0
12秒前
浪费青春传奇完成签到 ,获得积分10
15秒前
少女徐必成完成签到 ,获得积分10
15秒前
健壮的思枫完成签到,获得积分10
16秒前
棱擎1号完成签到 ,获得积分10
17秒前
19秒前
tian发布了新的文献求助10
19秒前
panpanliumin完成签到,获得积分0
20秒前
普鲁卡因发布了新的文献求助10
22秒前
Keyuuu30完成签到,获得积分0
22秒前
22秒前
学者风范完成签到 ,获得积分10
24秒前
进退须臾完成签到,获得积分10
25秒前
图图发布了新的文献求助10
25秒前
liujinjin完成签到,获得积分10
26秒前
甜甜醉波完成签到,获得积分10
26秒前
小不完成签到 ,获得积分10
27秒前
小心薛了你完成签到,获得积分10
33秒前
与离完成签到 ,获得积分10
33秒前
感性的俊驰完成签到 ,获得积分10
37秒前
疯狂的凡梦完成签到 ,获得积分10
38秒前
桥豆麻袋完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
40秒前
Hello应助幸福的杨小夕采纳,获得10
40秒前
Lighten完成签到 ,获得积分10
41秒前
lyj完成签到 ,获得积分10
42秒前
成就茗完成签到 ,获得积分10
44秒前
ZD完成签到 ,获得积分10
53秒前
55秒前
英姑应助普鲁卡因采纳,获得10
58秒前
冰糕发布了新的文献求助10
1分钟前
BettyNie完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022