Go-encapsulated La-doped lithium manganese oxide assemblies to enhance lithium extraction performance in capacitive deionization

电容去离子 锂(药物) 石墨烯 材料科学 吸附 电解质 无机化学 氧化物 化学 化学工程 纳米技术 电化学 冶金 电极 有机化学 医学 物理化学 工程类 内分泌学
作者
Bin Hu,Yiwen Wang,Boshuang Zhang,Xiangju Song,Heqing Jiang,Jie Ma,Jianyun Liu
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:348: 127693-127693 被引量:15
标识
DOI:10.1016/j.seppur.2024.127693
摘要

The electrochemical lithium extraction technique from brine has emerged as a key strategy in addressing the issue of lithium resource scarcity. Lithium manganese oxide (LMO) stands out as a typical lithium-ion selective material. Nevertheless, its lithium extraction application is restricted by inadequate conductivity and limited cycling stability. In this report, through a simple electrostatic self-assembling method, a 3-dimensional (3D) GO/La-LMO hybrid was fabricated wherein La-doped LMO (La-LMO) was enveloped by graphene oxide (GO) nanosheets. The resultant GO/La-LMO exhibited a significantly improved electrochemical behavior with fast Li+ diffusion rate and high conductivity. The GO/La-LMO hybrid demonstrated outstanding selectivity for the electrochemical intercalation/de-intercalation of Li+. As a Li+-selective cathode in capacitive deionization (CDI) device, the GO/La-LMO electrode achieved a high Li+ adsorption capacity of 1.33 mmol g−1 (10 mM LiCl) and superior selectivity with a separation factor of 126 (Mg2+/Li+ = 30, molar ratio) in Mg2+/Li+ mixed solution. The Li+ extraction percentage reached 80.4 % in the simulated salt-lake brine. Crucially, the GO/La-LMO electrode substantiated prominent structural stability and low Mn dissolution over 100 cycles, attributed to the synergistic effect of La-doping and GO capsulation to mitigate Jahn-Teller distortion. In addition, the selective adsorption–desorption mechanism of Li+ was confirmed. This work introduces a facile approach for the fabrication of robust carbon-based LMO hybrids, demonstrating the potential applications as high-performance lithium-selective materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
heyihao发布了新的文献求助30
2秒前
2秒前
Owen应助高山我梦采纳,获得10
2秒前
zzy完成签到,获得积分10
2秒前
2秒前
4秒前
zezeze111关注了科研通微信公众号
5秒前
6秒前
emm发布了新的文献求助10
6秒前
6秒前
南极野人完成签到,获得积分10
6秒前
坦率耳机应助昏睡的蟠桃采纳,获得10
6秒前
啦啦啦啦啦完成签到,获得积分10
6秒前
6秒前
汉堡包应助WWW=WWW采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
dong应助科研通管家采纳,获得10
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
waddles发布了新的文献求助20
8秒前
小二郎应助科研通管家采纳,获得20
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
超级炎彬应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
dong应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052