Bottom Double Branch Path Networks With Confidence Calibration for Intracranial Aneurysms Detection in 3D MRA

校准 路径(计算) 计算机科学 数学 计算机网络 统计
作者
Shaoqi Zheng,Qichang Fu,Jin Wei,Xiaomei Xu,Jianqing Wang,Xiaobo Lai,Lilin Guo
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:35 (2)
标识
DOI:10.1002/ima.70071
摘要

ABSTRACT Intracranial aneurysms (IAs) are characterized by abnormal dilation of the brain blood vessel wall, the rupture of which often leads to subarachnoid hemorrhage with a high mortality rate. Current detections rely heavily on radiologists' interpretation of magnetic resonance angiography (MRA) images, but manual identification is time‐consuming and laborious. Therefore, it is urgent to carry out automatic detection tools for IAs, and various intelligent models have been developed in recent years. However, the size of IAs is relatively small compared with the high voxel resolution MRA images, and thus the data imbalance leads to a high false positive (FP) rate. To address these challenges, we have proposed an innovative 3D voxel detection framework based on Feature Pyramid Network (FPN) architecture, which is called bottom double branch path network with confidence calibration (BCOC for short). BCOC shows better effects on small objects for preserving diversities of feature maps and also creates efficient feature extractors by reducing the number of channels per layer, making it particularly advantageous for handling large three‐dimensional resolutions. Additionally, optimal transport (OT) has been applied for matching the detection and ground truth bounding boxes during the post‐process phase to refine bounding box positions, thereby further improving the detection performance. Moreover, the confidence score of model output is calibrated via calibration loss during training to make correct detections with higher confidence and wrong detections with lower confidence, which can reduce the FP rate. Our proposed model achieves mean average precision (AP) of 0.8186 and 0.8533, sensitivity of 93.91% and 98.43%, FPs/case of 0.1332 and 0.0541 on two public MRA datasets including cases with IAs collected from different hospitals, respectively, outperforming other state‐of‐the‐art methods. The results show that BCOC is a promising detection method for IAs automatic recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
司空豁应助li采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
pretty完成签到,获得积分10
3秒前
MXiV应助m0nesy采纳,获得50
3秒前
4秒前
4秒前
6秒前
6秒前
哈哈哈哈完成签到 ,获得积分10
6秒前
上官若男应助认真科研采纳,获得10
6秒前
镜中男人发布了新的文献求助10
7秒前
ohh发布了新的文献求助10
8秒前
8秒前
9秒前
柳七发布了新的文献求助10
9秒前
10秒前
杨杨完成签到 ,获得积分10
10秒前
烂橘子给烂橘子的求助进行了留言
10秒前
贪玩蔡徐坤完成签到,获得积分20
11秒前
Aurora发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
14秒前
善良的冷梅完成签到,获得积分10
14秒前
15秒前
15秒前
江河完成签到,获得积分10
15秒前
ohh完成签到,获得积分20
15秒前
16秒前
爱喝酸奶关注了科研通微信公众号
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
hhh发布了新的文献求助10
18秒前
谨慎师完成签到 ,获得积分10
19秒前
19秒前
小二郎应助镜中男人采纳,获得30
19秒前
科目三应助惜名采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3659929
求助须知:如何正确求助?哪些是违规求助? 3221325
关于积分的说明 9739851
捐赠科研通 2930724
什么是DOI,文献DOI怎么找? 1604598
邀请新用户注册赠送积分活动 757316
科研通“疑难数据库(出版商)”最低求助积分说明 734376