清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Characterizing directional dynamics of semantic prediction based on inter-regional temporal generalization

一般化 动力学(音乐) 计算机科学 人工智能 数学 心理学 数学分析 教育学
作者
Fahimeh Mamashli,Sheraz Khan,Elaheh Hatamimajoumerd,Mainak Jas,Işıl Uluç,Kaisu Lankinen,Jonas Obleser,Angela D. Friederici,Burkhard Maeß,Jyrki Ahveninen
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:: e0230242025-e0230242025
标识
DOI:10.1523/jneurosci.0230-24.2025
摘要

The event-related potential/field component N400(m) is a widely accepted neural index for semantic prediction. Top-down input from inferior frontal areas to perceptual brain regions is hypothesized to play a key role in generating the N400, but testing this has been challenging due to limitations of causal connectivity estimation. We here provide new evidence for a predictive model of speech comprehension in which IFG activity feeds back to shape subsequent activity in STG/MTG. Magnetoencephalography (MEG) data was obtained from 21 participants (10 men, 11 women) during a classic N400 paradigm where the semantic predictability of a fixed target noun was manipulated in simple German sentences through the preceding verb. To estimate causality, we implemented a novel approach, based on machine learning and temporal generalization, to test the effect of inferior frontal gyrus (IFG) on temporal regions. A support vector machine (SVM) classifier was trained on IFG activity to classify less predicted (LP) and highly predicted (HP) nouns and tested on superior/middle temporal gyri (STG/MTG) activity, time-point by time-point. The reverse procedure was then performed to establish spatiotemporal evidence for or against causality. Significant decoding results were found in our bottom-up model, which were trained at hierarchically lower level areas (STG/MTG) and tested at the hierarchically higher IFG areas. Most interestingly, decoding accuracy also significantly exceeded chance level when the classifier was trained on IFG activity and tested on successive activity in STG/MTG. Our findings indicate dynamic top-down and bottom-up flow of information between IFG and temporal areas when generating semantic predictions. Significance Statement Semantic prediction helps anticipate the meaning of upcoming speech based on contextual information. How frontal and temporal cortices interact to enable this crucial function has remained elusive. We used novel data-driven MEG analyses to infer information flow from lower to higher areas (bottom-up) and vice versa (top-down) during semantic prediction. Using "earlier" MEG signals in one area to decode the "later" in another, we found that inferior frontal cortices feed predictions back to temporal cortices, to help decipher bottom-up signals going to the opposite direction. Our results provide experimental evidence on how top-down and bottom-up influences interact during language processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李东东完成签到 ,获得积分10
8秒前
clare完成签到 ,获得积分10
13秒前
yellowonion完成签到 ,获得积分10
16秒前
19秒前
taster发布了新的文献求助10
25秒前
吉吉国王完成签到,获得积分10
26秒前
今后应助taster采纳,获得10
30秒前
huiluowork完成签到 ,获得积分10
47秒前
lily完成签到 ,获得积分10
51秒前
研友完成签到 ,获得积分10
56秒前
Echo1128完成签到 ,获得积分10
1分钟前
小花完成签到,获得积分10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
back you up应助科研通管家采纳,获得30
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
务实青筠完成签到 ,获得积分10
1分钟前
古炮完成签到 ,获得积分10
1分钟前
tivyg'lk完成签到 ,获得积分10
2分钟前
清客完成签到 ,获得积分10
2分钟前
刘丰完成签到 ,获得积分10
2分钟前
黄豆芽完成签到,获得积分20
2分钟前
研友_8Wq6Mn完成签到 ,获得积分10
2分钟前
默默毛豆完成签到,获得积分10
2分钟前
微卫星不稳定完成签到 ,获得积分10
2分钟前
theo完成签到 ,获得积分10
3分钟前
勤恳的书文完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
back you up应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
可玩性完成签到 ,获得积分10
3分钟前
谦让的契完成签到 ,获得积分10
3分钟前
slycmd完成签到,获得积分10
4分钟前
萧水白完成签到,获得积分10
4分钟前
今我来思完成签到 ,获得积分10
4分钟前
王者归来完成签到,获得积分10
4分钟前
兔葵燕麦完成签到 ,获得积分10
4分钟前
LZQ发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674469
求助须知:如何正确求助?哪些是违规求助? 3229778
关于积分的说明 9787084
捐赠科研通 2940322
什么是DOI,文献DOI怎么找? 1611886
邀请新用户注册赠送积分活动 761060
科研通“疑难数据库(出版商)”最低求助积分说明 736437