材料科学
过渡金属
X射线吸收光谱法
密度泛函理论
自旋态
掺杂剂
Atom(片上系统)
电催化剂
电化学
结晶学
吸收光谱法
催化作用
凝聚态物理
物理化学
化学
兴奋剂
计算化学
物理
电极
光电子学
计算机科学
嵌入式系统
生物化学
量子力学
作者
Yipeng Zang,Yan Liu,Ruihu Lu,Qin Yang,B.X. Wang,Mingsheng Zhang,Yu Mao,Ziyun Wang,Yanwei Lum
标识
DOI:10.1002/adma.202417034
摘要
Abstract Tuning transition metal spin states potentially offers a powerful means to control electrocatalyst activity. However, implementing such a strategy in electrochemical CO 2 reduction (CO 2 R) is challenging since rational design rules have yet to be elucidated. Here we show how the addition of P dopants to a ferromagnetic element (Fe, Co, and Ni) single‐atom catalyst (SAC) can shift its spin state. For instance, with Fe SAC, P dopants enable a switch from low spin state ( d x2‐ y2 0 , d z2 0 , d xz 2 , d yz 1 , d xy 2 ) in Fe‐N 4 to high spin state ( d x2‐y2 0 , d xz 1 , d yz 1 , d z2 1 , d xy 2 ) in Fe‐N 3 ‐P. This is studied using a suite of characterization efforts, including X‐ray absorption spectroscopy (XAS), electron spin resonance (ESR) spectroscopy, and superconducting quantum interference device (SQUID) measurements. When used for CO 2 R, the SAC with Fe‐N 3 ‐P active sites yields > 90% Faradaic efficiency to CO over a wide potential window of ≈530 mV and a maximum CO partial current density of ≈600 mA cm −2 . Density functional theory calculations reveal that high spin state Fe 3+ exhibits enhanced electron back donation via the d xz / d yz ‐π* bond, which enhances * COOH adsorption and promotes CO formation. Taken together, the results show how the SAC spin state can be intentionally tuned to boost CO 2 R performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI