Amino-Acid-Engineered Bionanozyme Selectivity for Colorimetric Detection of Human Serum Albumin

选择性 材料科学 人血清白蛋白 氨基酸 白蛋白 色谱法 生物化学 化学 催化作用
作者
Siang-Yun Chiang,C.T. Peng,Jun Lin,Jia-Wei Kuo,Yang‐Wei Lin,Chia‐Her Lin,Chong‐You Chen
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c22270
摘要

Nanozymes are emerging nanomaterials owing to their superior stability and enzyme-mimicking catalytic functions. However, unlike natural enzymes with inherent amino-acid-based recognition motifs for target interactions, manipulating nanozyme selectivity toward specific targets remains a major challenge. In this study, we introduce the de novo strategy using the supramolecular assembly of l-tryptophan (l-Trp) as the recognition amino acid with copper (Cu) ions for creating a human serum albumin (HSA)-responsive bionanozyme. This amino-acid-engineered bionanozyme enables selective colorimetric detection of HSA, a critical urinary biomarker for kidney diseases, overcoming the challenge that HSA is neither a typical substrate nor an inhibitor for most nanozymes. Kinetic studies and competitive tests reveal that HSA subdomain IIIA binding to l-Trp sites limits the electron-transfer-induced structural changes of l-Trp-Cu chelate rings, resulting in noncompetitive inhibition. This inhibition effect is significantly stronger than that observed for canonical amino acids, common proteins, and urinary interference species. Colorimetric monitoring of bionanozyme activity enables sensitive HSA detection with a detection limit of 1.3 nM and a quantification range of 2 nM to 10 μM. This approach is exceptionally more sensitive and offers a broader detection range compared to conventional colorimetric and fluorescent methods, suitable for diagnostics across various clinical stages of disease. This innovative rational strategy to designing and manipulating selective nanozyme–target interactions not only addresses the limitations of nanozymes but also expands their precise applications in complex biological systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
5秒前
隐形曼青应助无心的书蕾采纳,获得10
7秒前
香蕉觅云应助zhhhh采纳,获得10
8秒前
小宋发布了新的文献求助10
8秒前
SciGPT应助qks采纳,获得10
8秒前
二七完成签到 ,获得积分10
9秒前
9秒前
miugmiug发布了新的文献求助10
11秒前
Lucas应助jackdu采纳,获得10
11秒前
汉堡包应助眼睛大天思采纳,获得10
12秒前
12秒前
14秒前
小二郎应助紫紫吃菠菜采纳,获得10
14秒前
聪慧小燕发布了新的文献求助10
14秒前
bingbing完成签到,获得积分10
15秒前
TresAU发布了新的文献求助10
15秒前
BFQQQQ驳回了乐乐应助
15秒前
16秒前
情怀应助苏毓采纳,获得10
16秒前
yiyyyy发布了新的文献求助10
16秒前
羞涩的虔完成签到,获得积分10
16秒前
17秒前
p3ipeibrain发布了新的文献求助10
18秒前
渝州人应助swordlee采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
19秒前
19秒前
爱静静应助科研通管家采纳,获得10
19秒前
shi hui应助科研通管家采纳,获得10
19秒前
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
zzz发布了新的文献求助10
21秒前
21秒前
彭于晏应助聪慧小燕采纳,获得10
21秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555360
求助须知:如何正确求助?哪些是违规求助? 3130973
关于积分的说明 9389383
捐赠科研通 2830472
什么是DOI,文献DOI怎么找? 1556047
邀请新用户注册赠送积分活动 726376
科研通“疑难数据库(出版商)”最低求助积分说明 715738