Detection of mild cognitive impairment in type 2 diabetes mellitus based on machine learning using privileged information

人工智能 支持向量机 2型糖尿病 痴呆 机器学习 计算机科学 神经心理学 神经影像学 随机森林 认知 模式识别(心理学) 心理学 医学 糖尿病 精神科 病理 内分泌学 疾病
作者
Shuiwei Xia,Yu Zhang,Bo Peng,Xianghua Hu,Limin Zhou,Chunmiao Chen,Chenying Lu,Minjiang Chen,Chunying Pang,Yakang Dai,Jiansong Ji
出处
期刊:Neuroscience Letters [Elsevier]
卷期号:791: 136908-136908 被引量:7
标识
DOI:10.1016/j.neulet.2022.136908
摘要

Type 2 diabetes mellitus (T2DM) patients may develop into mild cognitive impairment (MCI) or even dementia. However, there is lack of reliable machine learning model for detection MCI in T2DM patients based on machine learning method. In addition, the brain network changes associated with MCI have not been studied. The aim of this study is to develop a machine learning based algorithm to help detect MCI in T2DM. There are 164 participants were included in this study. They were divided into T2DM-MCI (n = 56), T2DM-nonMCI (n = 49), and normal controls (n = 59) according to the neuropsychological evaluation. Functional connectivity of each participant was constructed based on resting-state magnetic resonance imaging (rs-fMRI). Feature selection was used to reduce the feature dimension. Then the selected features were set into the cascaded multi-column random vector functional link network (RVFL) classifier model using privileged information. Finally, the optimal model was trained and the classification performance was obtained using the testing data. The results show that the proposed algorithm has outstanding performance compared with classic methods. The classification accuracy of 73.18 % (T2DM-MCI vs NC) and 79.42 % (T2DM-MCI vs T2DM-nonMCI) were achieved. The functional connectivity related to T2DM-MCI mainly distribute in the frontal lobe, temporal lobe, and central region (motor cortex), which could be used as neuroimaging biomarkers to recognize MCI in T2DM patients. This study provides a machine learning model for diagnosis of MCI in T2DM patients and has potential clinical significance for timely intervention and treatment to delay the development of MCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禾禾禾完成签到 ,获得积分10
2秒前
kingfly2010完成签到,获得积分10
4秒前
x夏天完成签到 ,获得积分10
7秒前
小辣椒完成签到 ,获得积分10
10秒前
美好灵寒完成签到 ,获得积分10
13秒前
14秒前
拓小八完成签到,获得积分0
21秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
还行啊完成签到,获得积分10
26秒前
慈祥的发卡完成签到 ,获得积分10
31秒前
31秒前
35秒前
fxy完成签到 ,获得积分10
41秒前
Iris完成签到 ,获得积分10
42秒前
从心随缘完成签到 ,获得积分10
48秒前
爱吃无核瓜子完成签到,获得积分10
53秒前
静待花开完成签到 ,获得积分10
54秒前
传奇3应助shotball采纳,获得10
55秒前
温暖完成签到 ,获得积分10
1分钟前
梵莫完成签到,获得积分10
1分钟前
1分钟前
满当当完成签到 ,获得积分10
1分钟前
shotball发布了新的文献求助10
1分钟前
1分钟前
c123完成签到 ,获得积分10
1分钟前
多边形完成签到 ,获得积分10
1分钟前
幽默滑板完成签到 ,获得积分10
1分钟前
swordshine完成签到,获得积分0
1分钟前
kanong完成签到,获得积分0
1分钟前
小石头完成签到 ,获得积分10
1分钟前
ABJ完成签到 ,获得积分10
1分钟前
顾矜应助shotball采纳,获得10
1分钟前
搜集达人应助卢敏明采纳,获得10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
lysenko完成签到 ,获得积分10
1分钟前
Dong完成签到 ,获得积分10
1分钟前
lmg完成签到 ,获得积分10
1分钟前
倪妮完成签到 ,获得积分10
1分钟前
别致的小五完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357864
求助须知:如何正确求助?哪些是违规求助? 4489110
关于积分的说明 13972963
捐赠科研通 4390523
什么是DOI,文献DOI怎么找? 2412167
邀请新用户注册赠送积分活动 1404731
关于科研通互助平台的介绍 1379145