亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of mild cognitive impairment in type 2 diabetes mellitus based on machine learning using privileged information

人工智能 支持向量机 2型糖尿病 痴呆 机器学习 计算机科学 神经心理学 神经影像学 随机森林 认知 模式识别(心理学) 心理学 医学 糖尿病 精神科 病理 内分泌学 疾病
作者
Shuiwei Xia,Yu Zhang,Bo Peng,Xianghua Hu,Limin Zhou,Chunmiao Chen,Chenying Lu,Minjiang Chen,Chunying Pang,Yakang Dai,Jiansong Ji
出处
期刊:Neuroscience Letters [Elsevier]
卷期号:791: 136908-136908 被引量:7
标识
DOI:10.1016/j.neulet.2022.136908
摘要

Type 2 diabetes mellitus (T2DM) patients may develop into mild cognitive impairment (MCI) or even dementia. However, there is lack of reliable machine learning model for detection MCI in T2DM patients based on machine learning method. In addition, the brain network changes associated with MCI have not been studied. The aim of this study is to develop a machine learning based algorithm to help detect MCI in T2DM. There are 164 participants were included in this study. They were divided into T2DM-MCI (n = 56), T2DM-nonMCI (n = 49), and normal controls (n = 59) according to the neuropsychological evaluation. Functional connectivity of each participant was constructed based on resting-state magnetic resonance imaging (rs-fMRI). Feature selection was used to reduce the feature dimension. Then the selected features were set into the cascaded multi-column random vector functional link network (RVFL) classifier model using privileged information. Finally, the optimal model was trained and the classification performance was obtained using the testing data. The results show that the proposed algorithm has outstanding performance compared with classic methods. The classification accuracy of 73.18 % (T2DM-MCI vs NC) and 79.42 % (T2DM-MCI vs T2DM-nonMCI) were achieved. The functional connectivity related to T2DM-MCI mainly distribute in the frontal lobe, temporal lobe, and central region (motor cortex), which could be used as neuroimaging biomarkers to recognize MCI in T2DM patients. This study provides a machine learning model for diagnosis of MCI in T2DM patients and has potential clinical significance for timely intervention and treatment to delay the development of MCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
99668完成签到,获得积分10
1秒前
2秒前
6秒前
8秒前
nini发布了新的文献求助10
10秒前
小二郎应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮浮世世应助科研通管家采纳,获得30
17秒前
浮游应助科研通管家采纳,获得10
17秒前
寒玉完成签到,获得积分10
18秒前
21秒前
23秒前
23秒前
矮小的蜗牛完成签到,获得积分10
26秒前
Zilch发布了新的文献求助10
30秒前
36秒前
38秒前
所所应助一叶舟采纳,获得10
39秒前
迷路冰颜完成签到 ,获得积分10
40秒前
1nooooo完成签到 ,获得积分10
43秒前
46秒前
矮小的蜗牛关注了科研通微信公众号
48秒前
思源应助runfen采纳,获得10
48秒前
48秒前
wynne313完成签到 ,获得积分10
50秒前
梨凉完成签到,获得积分10
50秒前
王加冕完成签到 ,获得积分10
54秒前
shusen完成签到,获得积分10
55秒前
58秒前
徐志豪发布了新的文献求助10
58秒前
泡泡完成签到 ,获得积分10
59秒前
顺心成仁完成签到 ,获得积分10
1分钟前
1分钟前
fang完成签到,获得积分0
1分钟前
奋斗鸡翅完成签到,获得积分20
1分钟前
选择性哑巴完成签到 ,获得积分10
1分钟前
酷酷幻梦发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493741
求助须知:如何正确求助?哪些是违规求助? 4591745
关于积分的说明 14434583
捐赠科研通 4524146
什么是DOI,文献DOI怎么找? 2478673
邀请新用户注册赠送积分活动 1463681
关于科研通互助平台的介绍 1436464