Detection of mild cognitive impairment in type 2 diabetes mellitus based on machine learning using privileged information

人工智能 支持向量机 2型糖尿病 痴呆 机器学习 计算机科学 神经心理学 神经影像学 随机森林 认知 模式识别(心理学) 心理学 医学 糖尿病 精神科 病理 内分泌学 疾病
作者
Shuiwei Xia,Yu Zhang,Bo Peng,Xianghua Hu,Limin Zhou,Chunmiao Chen,Chenying Lu,Minjiang Chen,Chunying Pang,Yakang Dai,Jiansong Ji
出处
期刊:Neuroscience Letters [Elsevier]
卷期号:791: 136908-136908 被引量:4
标识
DOI:10.1016/j.neulet.2022.136908
摘要

Type 2 diabetes mellitus (T2DM) patients may develop into mild cognitive impairment (MCI) or even dementia. However, there is lack of reliable machine learning model for detection MCI in T2DM patients based on machine learning method. In addition, the brain network changes associated with MCI have not been studied. The aim of this study is to develop a machine learning based algorithm to help detect MCI in T2DM. There are 164 participants were included in this study. They were divided into T2DM-MCI (n = 56), T2DM-nonMCI (n = 49), and normal controls (n = 59) according to the neuropsychological evaluation. Functional connectivity of each participant was constructed based on resting-state magnetic resonance imaging (rs-fMRI). Feature selection was used to reduce the feature dimension. Then the selected features were set into the cascaded multi-column random vector functional link network (RVFL) classifier model using privileged information. Finally, the optimal model was trained and the classification performance was obtained using the testing data. The results show that the proposed algorithm has outstanding performance compared with classic methods. The classification accuracy of 73.18 % (T2DM-MCI vs NC) and 79.42 % (T2DM-MCI vs T2DM-nonMCI) were achieved. The functional connectivity related to T2DM-MCI mainly distribute in the frontal lobe, temporal lobe, and central region (motor cortex), which could be used as neuroimaging biomarkers to recognize MCI in T2DM patients. This study provides a machine learning model for diagnosis of MCI in T2DM patients and has potential clinical significance for timely intervention and treatment to delay the development of MCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caicai完成签到,获得积分10
刚刚
汉堡包应助步行街车神ahua采纳,获得10
刚刚
禾泽发布了新的文献求助30
刚刚
刚刚
1秒前
科研通AI5应助lxh2424采纳,获得30
1秒前
2秒前
斯文芷荷完成签到,获得积分10
2秒前
3秒前
皮皮猫发布了新的文献求助10
4秒前
大方嵩发布了新的文献求助10
5秒前
魔幻灵槐完成签到,获得积分10
5秒前
悦耳的菠萝完成签到,获得积分10
6秒前
jy发布了新的文献求助10
6秒前
7秒前
7秒前
mfstone发布了新的文献求助10
7秒前
LiLi完成签到,获得积分10
8秒前
仁爱的老四完成签到 ,获得积分10
9秒前
李健的小迷弟应助学术z采纳,获得10
9秒前
科研通AI5应助归海紫翠采纳,获得30
10秒前
热情的初兰完成签到 ,获得积分10
11秒前
顺顺完成签到,获得积分10
11秒前
莫妮卡卡完成签到,获得积分10
11秒前
nbing完成签到,获得积分10
12秒前
SCI发布了新的文献求助50
12秒前
小猫多鱼完成签到,获得积分10
13秒前
13秒前
13秒前
默默尔烟发布了新的文献求助10
13秒前
13秒前
13秒前
宁静致远完成签到,获得积分10
13秒前
天天快乐应助内向秋寒采纳,获得10
16秒前
sfafasfsdf完成签到,获得积分10
16秒前
16秒前
luuuuuu发布了新的文献求助10
17秒前
lai发布了新的文献求助30
17秒前
17秒前
zrk发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794