Detection of mild cognitive impairment in type 2 diabetes mellitus based on machine learning using privileged information

人工智能 支持向量机 2型糖尿病 痴呆 机器学习 计算机科学 神经心理学 神经影像学 随机森林 认知 模式识别(心理学) 心理学 医学 糖尿病 精神科 病理 内分泌学 疾病
作者
Shuiwei Xia,Yu Zhang,Bo Peng,Xianghua Hu,Limin Zhou,Chunmiao Chen,Chenying Lu,Minjiang Chen,Chunying Pang,Yakang Dai,Jiansong Ji
出处
期刊:Neuroscience Letters [Elsevier]
卷期号:791: 136908-136908 被引量:4
标识
DOI:10.1016/j.neulet.2022.136908
摘要

Type 2 diabetes mellitus (T2DM) patients may develop into mild cognitive impairment (MCI) or even dementia. However, there is lack of reliable machine learning model for detection MCI in T2DM patients based on machine learning method. In addition, the brain network changes associated with MCI have not been studied. The aim of this study is to develop a machine learning based algorithm to help detect MCI in T2DM. There are 164 participants were included in this study. They were divided into T2DM-MCI (n = 56), T2DM-nonMCI (n = 49), and normal controls (n = 59) according to the neuropsychological evaluation. Functional connectivity of each participant was constructed based on resting-state magnetic resonance imaging (rs-fMRI). Feature selection was used to reduce the feature dimension. Then the selected features were set into the cascaded multi-column random vector functional link network (RVFL) classifier model using privileged information. Finally, the optimal model was trained and the classification performance was obtained using the testing data. The results show that the proposed algorithm has outstanding performance compared with classic methods. The classification accuracy of 73.18 % (T2DM-MCI vs NC) and 79.42 % (T2DM-MCI vs T2DM-nonMCI) were achieved. The functional connectivity related to T2DM-MCI mainly distribute in the frontal lobe, temporal lobe, and central region (motor cortex), which could be used as neuroimaging biomarkers to recognize MCI in T2DM patients. This study provides a machine learning model for diagnosis of MCI in T2DM patients and has potential clinical significance for timely intervention and treatment to delay the development of MCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到,获得积分10
1秒前
唐亿倩完成签到,获得积分10
1秒前
Audrey完成签到 ,获得积分10
1秒前
1秒前
韋晴完成签到,获得积分10
1秒前
贪学傲菡发布了新的文献求助10
2秒前
2秒前
酷波er应助kkuang采纳,获得10
2秒前
刘璇2完成签到,获得积分10
4秒前
欢呼的茗茗完成签到 ,获得积分10
4秒前
5秒前
8秒前
散逸层梦游应助Audrey采纳,获得10
9秒前
IAMXC发布了新的文献求助10
10秒前
10秒前
10秒前
脑洞疼应助贪学傲菡采纳,获得10
11秒前
Jasper应助你是我的小月亮采纳,获得10
11秒前
充电宝应助谷贝贝采纳,获得10
11秒前
Elbert驳回了Frank应助
11秒前
不配.应助压寨猫夫人采纳,获得50
12秒前
刘璇1完成签到,获得积分10
13秒前
怕孤独的小霜关注了科研通微信公众号
13秒前
lisa0612发布了新的文献求助10
14秒前
突突完成签到,获得积分10
15秒前
mmyhn发布了新的文献求助50
15秒前
15秒前
15秒前
15秒前
kkuang发布了新的文献求助10
16秒前
smh发布了新的文献求助10
16秒前
烟花应助2123121321321采纳,获得10
18秒前
阿九发布了新的文献求助10
19秒前
于胜男发布了新的文献求助10
19秒前
丘比特应助今日店休采纳,获得10
20秒前
single发布了新的文献求助10
21秒前
stellafreeman完成签到,获得积分10
21秒前
过时的白曼完成签到,获得积分10
22秒前
subass完成签到 ,获得积分10
22秒前
dxszing完成签到 ,获得积分10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148036
求助须知:如何正确求助?哪些是违规求助? 2799058
关于积分的说明 7833372
捐赠科研通 2456221
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628077
版权声明 601620