已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Design Method of Two-Dimensional Subwavelength Grating Filter Based on Deep Learning Series Feedback Neural Network

栅栏 人工神经网络 计算机科学 系列(地层学) 占空比 滤波器(信号处理) 算法 光学 人工智能 物理 计算机视觉 量子力学 生物 古生物学 功率(物理)
作者
Guo Jun-hua,Yingli Zhang,Shuaishuai Zhang,Changlong Cai,Haifeng Liang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (20): 7758-7758 被引量:3
标识
DOI:10.3390/s22207758
摘要

Subwavelength grating structure has excellent filtering characteristics, and its traditional design method needs a lot of computational costs. This work proposed a design method of two-dimensional subwavelength grating filter based on a series feedback neural network, which can realize forward simulation and backward design. It was programed in Python to study the filtering characteristics of two-dimensional subwavelength grating in the range of 0.4-0.7 µm. The shape, height, period, duty cycle, and waveguide layer height of two-dimensional subwavelength grating were taken into consideration. The dataset, containing 46,080 groups of data, was generated through numerical simulation of rigorous coupled-wave analysis (RCWA). The optimal network was five layers, 128 × 512 × 512 × 128 × 61 nodes, and 64 batch size. The loss function of the series feedback neural network is as low as 0.024. Meanwhile, it solves the problem of non-convergence of the network reverse design due to the non-uniqueness of data. The series feedback neural network can give the geometrical structure parameters of two-dimensional subwavelength grating within 1.12 s, and the correlation between the design results and the theoretical spectrum is greater than 0.65, which belongs to a strong correlation. This study provides a new method for the design of two-dimensional subwavelength grating, which is quicker and more accurate compared with the traditional method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John完成签到,获得积分10
1秒前
vividkingking完成签到 ,获得积分10
1秒前
2秒前
情怀应助积极的铃铛采纳,获得10
2秒前
唐文硕发布了新的文献求助10
5秒前
5秒前
9秒前
10秒前
11秒前
李爱国应助唐文硕采纳,获得10
12秒前
13秒前
香蕉觅云应助lpp采纳,获得10
13秒前
搜集达人应助臻灏采纳,获得10
13秒前
阿宝完成签到,获得积分10
14秒前
大方明杰发布了新的文献求助10
15秒前
十七完成签到 ,获得积分10
18秒前
桐桐应助阿九采纳,获得10
20秒前
21秒前
香飘飘完成签到,获得积分10
21秒前
linkman发布了新的文献求助10
26秒前
臻灏完成签到,获得积分10
26秒前
27秒前
34秒前
田様应助轩轩采纳,获得10
35秒前
啊哈哈发布了新的文献求助10
37秒前
38秒前
稚久发布了新的文献求助10
41秒前
41秒前
lpp发布了新的文献求助10
43秒前
综述王发布了新的文献求助10
43秒前
不会游泳完成签到,获得积分10
43秒前
白茶完成签到 ,获得积分10
45秒前
大家好发布了新的文献求助10
47秒前
量子星尘发布了新的文献求助10
48秒前
52秒前
yx_cheng应助halo1994采纳,获得10
53秒前
顾矜应助综述王采纳,获得10
54秒前
54秒前
55秒前
李健应助科研1采纳,获得10
56秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502916
关于积分的说明 11110677
捐赠科研通 3233882
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802191