Machine Learning and Hybrid Methods for Metabolic Pathway Modeling

计算机科学 代谢网络 机器学习 人工智能 代谢组学 焊剂(冶金) 生物信息学 生物 化学 有机化学
作者
Miroslava Čuperlović‐Culf,Thao Nguyen-Tran,Steffany A. L. Bennett
出处
期刊:Methods in molecular biology 卷期号:: 417-439 被引量:9
标识
DOI:10.1007/978-1-0716-2617-7_18
摘要

Computational cell metabolism models seek to provide metabolic explanations of cell behavior under different conditions or following genetic alterations, help in the optimization of in vitro cell growth environments, or predict cellular behavior in vivo and in vitro. In the extremes, mechanistic models can include highly detailed descriptions of a small number of metabolic reactions or an approximate representation of an entire metabolic network. To date, all mechanistic models have required details of individual metabolic reactions, either kinetic parameters or metabolic flux, as well as information about extracellular and intracellular metabolite concentrations. Despite the extensive efforts and the increasing availability of high-quality data, required in vivo data are not available for the majority of known metabolic reactions; thus, mechanistic models are based primarily on ex vivo kinetic measurements and limited flux information. Machine learning approaches provide an alternative for derivation of functional dependencies from existing data. The increasing availability of metabolomic and lipidomic data, with growing feature coverage as well as sample set size, is expected to provide new data options needed for derivation of machine learning models of cell metabolic processes. Moreover, machine learning analysis of longitudinal data can lead to predictive models of cell behaviors over time. Conversely, machine learning models trained on steady-state data can provide descriptive models for the comparison of metabolic states in different environments or disease conditions. Additionally, inclusion of metabolic network knowledge in these analyses can further help in the development of models with limited data.This chapter will explore the application of machine learning to the modeling of cell metabolism. We first provide a theoretical explanation of several machine learning and hybrid mechanistic machine learning methods currently being explored to model metabolism. Next, we introduce several avenues for improving these models with machine learning. Finally, we provide protocols for specific examples of the utilization of machine learning in the development of predictive cell metabolism models using metabolomic data. We describe data preprocessing, approaches for training of machine learning models for both descriptive and predictive models, and the utilization of these models in synthetic and systems biology. Detailed protocols provide a list of software tools and libraries used for these applications, step-by-step modeling protocols, troubleshooting, as well as an overview of existing limitations to these approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
BKP发布了新的文献求助10
1秒前
1秒前
AAA111122完成签到,获得积分10
2秒前
anna1992发布了新的文献求助10
2秒前
run发布了新的文献求助30
2秒前
研友_VZG7GZ应助清风与你采纳,获得10
2秒前
安安发布了新的文献求助10
2秒前
123完成签到,获得积分10
3秒前
今后应助kkkk采纳,获得10
3秒前
BILNQPL完成签到,获得积分10
4秒前
kily驳回了苏卿应助
5秒前
cxy3311完成签到,获得积分10
5秒前
yuyu完成签到,获得积分10
5秒前
俏皮易绿完成签到 ,获得积分10
5秒前
123发布了新的文献求助10
6秒前
科研通AI5应助孙刚采纳,获得10
6秒前
orixero应助guoguo采纳,获得10
6秒前
Clover04发布了新的文献求助10
6秒前
清风与你完成签到,获得积分10
7秒前
7秒前
SciGPT应助快乐的紫寒采纳,获得10
7秒前
科研通AI5应助run采纳,获得30
8秒前
科研通AI5应助123采纳,获得10
8秒前
努力科研的小吴完成签到,获得积分10
9秒前
9秒前
含蓄藏花发布了新的文献求助20
10秒前
weiweiwei完成签到,获得积分10
11秒前
12秒前
qiaozhi乔治发布了新的文献求助10
12秒前
清风与你发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
学术飞舞完成签到,获得积分10
14秒前
矮小的芷雪完成签到,获得积分10
14秒前
14秒前
14秒前
欢呼高山完成签到,获得积分10
15秒前
Shelton完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559156
求助须知:如何正确求助?哪些是违规求助? 3133718
关于积分的说明 9403929
捐赠科研通 2833973
什么是DOI,文献DOI怎么找? 1557731
邀请新用户注册赠送积分活动 727632
科研通“疑难数据库(出版商)”最低求助积分说明 716383