Cross modality fusion for modality-specific lung tumor segmentation in PET-CT images

模态(人机交互) 正电子发射断层摄影术 分割 人工智能 计算机科学 肺癌 PET-CT 断层摄影术 核医学 放射科 计算机视觉 医学 病理
作者
Xu Zhang,Bin Zhang,Shengming Deng,Qingquan Meng,Xinjian Chen,Dehui Xiang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (22): 225006-225006 被引量:4
标识
DOI:10.1088/1361-6560/ac994e
摘要

Abstract Although positron emission tomography-computed tomography (PET-CT) images have been widely used, it is still challenging to accurately segment the lung tumor. The respiration, movement and imaging modality lead to large modality discrepancy of the lung tumors between PET images and CT images. To overcome these difficulties, a novel network is designed to simultaneously obtain the corresponding lung tumors of PET images and CT images. The proposed network can fuse the complementary information and preserve modality-specific features of PET images and CT images. Due to the complementarity between PET images and CT images, the two modality images should be fused for automatic lung tumor segmentation. Therefore, cross modality decoding blocks are designed to extract modality-specific features of PET images and CT images with the constraints of the other modality. The edge consistency loss is also designed to solve the problem of blurred boundaries of PET images and CT images. The proposed method is tested on 126 PET-CT images with non-small cell lung cancer, and Dice similarity coefficient scores of lung tumor segmentation reach 75.66 ± 19.42 in CT images and 79.85 ± 16.76 in PET images, respectively. Extensive comparisons with state-of-the-art lung tumor segmentation methods have also been performed to demonstrate the superiority of the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助lanlan采纳,获得10
刚刚
2秒前
云出发布了新的文献求助10
2秒前
peng完成签到,获得积分20
2秒前
3秒前
4秒前
4秒前
6秒前
坚定柏柳发布了新的文献求助10
6秒前
我像风一样自由完成签到,获得积分10
6秒前
6秒前
lllxxx完成签到,获得积分10
6秒前
安静乐瑶完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
一颗大门牙完成签到,获得积分20
8秒前
8秒前
Ding发布了新的文献求助10
8秒前
TAA66完成签到,获得积分10
8秒前
隐形曼青应助陶醉羽毛采纳,获得10
9秒前
9秒前
Darren_L完成签到,获得积分10
9秒前
yl完成签到,获得积分10
9秒前
10秒前
唐唐完成签到 ,获得积分10
10秒前
科研通AI5应助yjh采纳,获得10
10秒前
李健应助老实的孤丹采纳,获得10
11秒前
11秒前
Pengwuguang发布了新的文献求助10
12秒前
在水一方应助无私诗云采纳,获得10
12秒前
润润润发布了新的文献求助10
13秒前
安半仙完成签到,获得积分10
13秒前
欣欣完成签到 ,获得积分10
13秒前
innocent完成签到,获得积分10
14秒前
云出完成签到,获得积分10
14秒前
lanlan发布了新的文献求助10
15秒前
15秒前
yl发布了新的文献求助10
15秒前
微微完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320