A Cooperative Analysis to Incentivize Communication-Efficient Federated Learning

计算机科学 激励 机构设计 纳什均衡 激励相容性 讨价还价问题 付款 组合拍卖 博弈论 共同价值拍卖 数理经济学 运筹学 人工智能 微观经济学 经济 数学 万维网
作者
Youqi Li,Fan Li,Song Yang,Chuan Zhang,Liehuang Zhu,Yu Wang
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 10175-10190 被引量:1
标识
DOI:10.1109/tmc.2024.3373501
摘要

Federated Learning (FL) has achieved state-of-the-art performance in training a global model in a decentralized and privacy-preserving manner. Many recent works have demonstrated that incentive mechanism is of paramount importance for the success of FL. Existing incentives to FL either neglect communication efficiency, or consider communication efficiency but design the incentive mechanisms using non-cooperative games under complete information assumption, or study incentive mechanism under incomplete information but only apply to the sequential interaction setting. We shed light on this problem from the cooperative perspective and propose an incentive mechanism for communication-efficient FL based on the Nash bargaining theory. Specially, we formulate our incentive mechanism as a one-to-many concurrent bargaining game among the aggregator and clients, and systematically analyze the Nash bargaining solution (NBS, game equilibrium) to design the incentive mechanism. It should be noted that the existing sequential bargaining is not suitable for incentivizing FL due to high (exponential) time complexity, which deteriorates the straggler problem in FL. Our formulated bargaining game is challenging due to the NP-hardness. We propose a probabilistic greedy-based client selection algorithm and derive an analytical payment solution as an approximate NBS. We prove the convergence guarantee of our incentive mechanism for communication-efficient FL. Finally, we conduct experiments over real-world datasets to evaluate the performance of our incentive mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
路十三完成签到 ,获得积分10
1秒前
RC_Wang应助土豆不吃鱼采纳,获得10
2秒前
puer完成签到,获得积分10
2秒前
2秒前
科研通AI5应助Hakan采纳,获得30
4秒前
拼死拼活完成签到 ,获得积分10
5秒前
LLL发布了新的文献求助10
5秒前
眭超阳完成签到 ,获得积分10
6秒前
6秒前
sweetbearm应助kimbok采纳,获得10
8秒前
Asma_2104发布了新的文献求助10
8秒前
10秒前
jinghong完成签到 ,获得积分10
11秒前
奶味蓝发布了新的文献求助10
13秒前
ZY完成签到 ,获得积分10
13秒前
14秒前
袁宁宁静完成签到 ,获得积分10
15秒前
15秒前
Smartan发布了新的文献求助10
15秒前
LLL完成签到 ,获得积分10
17秒前
Ava应助Asma_2104采纳,获得10
17秒前
gaos发布了新的文献求助10
18秒前
打打应助木子采纳,获得10
19秒前
21秒前
星辰大海应助chen采纳,获得10
23秒前
早岁完成签到,获得积分10
24秒前
华仔应助大气的书萱采纳,获得10
25秒前
成就书雪完成签到,获得积分10
28秒前
Jasper应助科研通管家采纳,获得10
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
小林太郎应助科研通管家采纳,获得30
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
竹筏过海应助科研通管家采纳,获得30
29秒前
我是老大应助科研通管家采纳,获得10
29秒前
所所应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522957
求助须知:如何正确求助?哪些是违规求助? 3103935
关于积分的说明 9268001
捐赠科研通 2800675
什么是DOI,文献DOI怎么找? 1537078
邀请新用户注册赠送积分活动 715371
科研通“疑难数据库(出版商)”最低求助积分说明 708759