CSPNeXt: A new efficient token hybrid backbone

计算机科学 安全性令牌 计算机网络
作者
Xiangqi Chen,Chengzhuan Yang,Jiashuaizi Mo,Yaxin Sun,Hicham Karmouni,Yunliang Jiang,Zhonglong Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:132: 107886-107886
标识
DOI:10.1016/j.engappai.2024.107886
摘要

Although the cross-stage partial network (CSPNet) model enhances the learning ability and reduces the computational effort of convolutional neural networks, while offering high flexibility and efficiency. However, the model is significantly affected by the limited perceptual field and the weak mixing of high-frequency and low-frequency features, which significantly affects the recognition performance of the model. To alleviate this problem, we propose a ”modernized” CSPNeXt model that can effectively learn the feature maps’ high- and low-frequency information and extend the perceptual field to improve the recognition performance of the CSPNet model. At the same time, the CSPNeXt model also retains the corresponding advantages of the CSPNet model. Specifically, we introduce parallel large-kernel convolution and a simple average pooling method to capture different frequency information in the image. Unlike the original CSPNet channel splitting mechanism, CSPNeXt mixer is more effective in feature fusion by introducing a new channel splitting mechanism. To obtain more high-frequency signals in the shallow layer and more low-frequency signals in the deep layer, we increase the dimension of feeding to the high-frequency mixer while expanding the dimension of providing to the low-frequency mixer in the deep layer. This mechanism efficiently captures high and low frequencies signal at different levels. We extensively test the CSPNeXt model on various vision tasks, including image classification, object detection, and instance segmentation, and the model demonstrates its excellent performance, outperforming previous CSPNet method. Our method achieves 81.6% top-1 accuracy on Imagenet-1K, 1.8% better than DeiT-S and slightly better than Swin-T (81.3%) while using fewer parameters and GFLOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猛发布了新的文献求助10
1秒前
1秒前
1秒前
普通用户30号完成签到,获得积分10
1秒前
小蓝人发布了新的文献求助10
1秒前
等待之柔发布了新的文献求助10
1秒前
2秒前
Zx发布了新的文献求助10
2秒前
3秒前
3秒前
笑嘻嘻发布了新的文献求助10
3秒前
奶油小饼干完成签到 ,获得积分10
3秒前
无花果应助风收奇绩采纳,获得10
4秒前
妖哥发布了新的文献求助10
4秒前
5秒前
嗒嗒发布了新的文献求助10
6秒前
JamesPei应助Duffy_Z采纳,获得30
7秒前
111发布了新的文献求助10
7秒前
tsaiyy77发布了新的文献求助10
8秒前
bkagyin应助CAST1347采纳,获得10
8秒前
金明发布了新的文献求助10
8秒前
TYL发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
橙子完成签到,获得积分10
10秒前
李敏之发布了新的文献求助10
10秒前
等待之柔完成签到,获得积分10
10秒前
CCC完成签到,获得积分10
11秒前
健忘的学生完成签到,获得积分10
11秒前
Zx完成签到,获得积分20
11秒前
可可可可乐完成签到,获得积分10
12秒前
12秒前
酷波er应助111采纳,获得10
13秒前
Duffy_Z完成签到,获得积分20
13秒前
13秒前
猫的太阳完成签到,获得积分10
13秒前
bioglia完成签到,获得积分10
15秒前
何YI发布了新的文献求助10
15秒前
sera发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160253
求助须知:如何正确求助?哪些是违规求助? 2811323
关于积分的说明 7891987
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315488
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038