CSPNeXt: A new efficient token hybrid backbone

计算机科学 安全性令牌 计算机网络
作者
Xiangqi Chen,Chengzhuan Yang,Jiashuaizi Mo,Yaxin Sun,Hicham Karmouni,Yunliang Jiang,Zhonglong Zheng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:132: 107886-107886 被引量:8
标识
DOI:10.1016/j.engappai.2024.107886
摘要

Although the cross-stage partial network (CSPNet) model enhances the learning ability and reduces the computational effort of convolutional neural networks, while offering high flexibility and efficiency. However, the model is significantly affected by the limited perceptual field and the weak mixing of high-frequency and low-frequency features, which significantly affects the recognition performance of the model. To alleviate this problem, we propose a ”modernized” CSPNeXt model that can effectively learn the feature maps’ high- and low-frequency information and extend the perceptual field to improve the recognition performance of the CSPNet model. At the same time, the CSPNeXt model also retains the corresponding advantages of the CSPNet model. Specifically, we introduce parallel large-kernel convolution and a simple average pooling method to capture different frequency information in the image. Unlike the original CSPNet channel splitting mechanism, CSPNeXt mixer is more effective in feature fusion by introducing a new channel splitting mechanism. To obtain more high-frequency signals in the shallow layer and more low-frequency signals in the deep layer, we increase the dimension of feeding to the high-frequency mixer while expanding the dimension of providing to the low-frequency mixer in the deep layer. This mechanism efficiently captures high and low frequencies signal at different levels. We extensively test the CSPNeXt model on various vision tasks, including image classification, object detection, and instance segmentation, and the model demonstrates its excellent performance, outperforming previous CSPNet method. Our method achieves 81.6% top-1 accuracy on Imagenet-1K, 1.8% better than DeiT-S and slightly better than Swin-T (81.3%) while using fewer parameters and GFLOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fafafasci完成签到,获得积分10
1秒前
百忧解完成签到,获得积分10
1秒前
2秒前
英姑应助123采纳,获得10
4秒前
4秒前
atonnng完成签到,获得积分10
5秒前
5秒前
7秒前
swt完成签到 ,获得积分10
8秒前
乐乐应助alim源采纳,获得10
9秒前
XIAOLI应助xxxxxxx采纳,获得10
9秒前
11秒前
cL发布了新的文献求助10
11秒前
12秒前
12秒前
Atan完成签到,获得积分10
13秒前
15秒前
123发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
Ran发布了新的文献求助10
18秒前
20秒前
HHHH发布了新的文献求助10
21秒前
uwu发布了新的文献求助10
21秒前
听说发布了新的文献求助10
23秒前
23秒前
听说完成签到,获得积分10
29秒前
kuikichu完成签到,获得积分10
29秒前
30秒前
yin发布了新的文献求助20
31秒前
Allen完成签到,获得积分10
32秒前
笨笨青筠发布了新的文献求助10
32秒前
李健应助uwu采纳,获得10
33秒前
怕孤单的听寒完成签到,获得积分10
34秒前
liangshuang发布了新的文献求助10
37秒前
万能图书馆应助千里采纳,获得10
39秒前
HHHH完成签到,获得积分10
39秒前
康师傅冰红茶完成签到,获得积分10
41秒前
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673735
求助须知:如何正确求助?哪些是违规求助? 3229198
关于积分的说明 9784642
捐赠科研通 2939771
什么是DOI,文献DOI怎么找? 1611366
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736326