EPolar‐UNet: An edge‐attending polar UNet for automatic medical image segmentation with small datasets

图像分割 水准点(测量) 分割 模式识别(心理学) 计算机视觉 人工智能 计算机科学 卷积神经网络 极坐标系 数学 大地测量学 几何学 地理
作者
Yating Ling,Yu‐Ling Wang,Qian Liu,Jie Yu,Lei Xu,Xiaoqian Zhang,Ping Liang,Dexing Kong
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1702-1713
标识
DOI:10.1002/mp.16957
摘要

Abstract Background Medical image segmentation is one of the most key steps in computer‐aided clinical diagnosis, geometric characterization, measurement, image registration, and so forth. Convolutional neural networks especially UNet and its variants have been successfully used in many medical image segmentation tasks. However, the results are limited by the deficiency in extracting high resolution edge information because of the design of the skip connections in UNet and the need for large available datasets. Purpose In this paper, we proposed an edge‐attending polar UNet (EPolar‐UNet), which was trained on the polar coordinate system instead of classic Cartesian coordinate system with an edge‐attending construction in skip connection path. Methods EPolar‐UNet extracted the location information from an eight‐stacked hourglass network as the pole for polar transformation and extracted the boundary cues from an edge‐attending UNet, which consisted of a deconvolution layer and a subtraction operation. Results We evaluated the performance of EPolar‐UNet across three imaging modalities for different segmentation tasks: CVC‐ClinicDB dataset for polyp, ISIC‐2018 dataset for skin lesion, and our private ultrasound dataset for liver tumor segmentation. Our proposed model outperformed state‐of‐the‐art models on all three datasets and needed only 30%–60% of training data compared with the benchmark UNet model to achieve similar performances for medical image segmentation tasks. Conclusions We proposed an end‐to‐end EPolar‐UNet for automatic medical image segmentation and showed good performance on small datasets, which was critical in the field of medical image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhao完成签到,获得积分10
刚刚
1秒前
坦率笑天发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
Bingtao_Lian发布了新的文献求助10
4秒前
4秒前
柚柚子完成签到,获得积分10
5秒前
5秒前
5秒前
where完成签到,获得积分10
6秒前
桐桐应助wibxnxkfkd采纳,获得10
6秒前
6秒前
7秒前
8秒前
CF发布了新的文献求助10
8秒前
周洋发布了新的文献求助10
8秒前
Jacky发布了新的文献求助50
9秒前
LCX发布了新的文献求助10
9秒前
9秒前
9秒前
飛全应助TheBugsss采纳,获得30
9秒前
11秒前
钰c完成签到,获得积分10
11秒前
11秒前
dfsdf发布了新的文献求助10
11秒前
核桃发布了新的文献求助30
11秒前
kimon完成签到,获得积分10
13秒前
13秒前
小朱完成签到,获得积分10
13秒前
orange完成签到,获得积分10
13秒前
14秒前
奋斗的友儿完成签到,获得积分10
14秒前
钰c发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732848
求助须知:如何正确求助?哪些是违规求助? 3276965
关于积分的说明 9999955
捐赠科研通 2992651
什么是DOI,文献DOI怎么找? 1642404
邀请新用户注册赠送积分活动 780360
科研通“疑难数据库(出版商)”最低求助积分说明 748744