基于生理学的药代动力学模型
硝苯地平
经胎盘
药代动力学
医学
胎儿
药理学
妊娠期
怀孕
人口
化学
内科学
胎盘
生物
钙
环境卫生
遗传学
作者
Marya Antônya Werdan Romão,Leonardo Pinto,Ricardo de Carvalho Cavalli,Geraldo Duarte,Natália Valadares de Moraes,Khaled Abduljalil,Fernanda de Lima Moreira
摘要
Abstract Nifedipine is used for treating mild to severe hypertension and preventing preterm labor in pregnant women. Nevertheless, concerns about nifedipine fetal exposure and safety are always raised. The aim of this study was to develop and validate a maternal‐placental‐fetal nifedipine physiologically based pharmacokinetic (PBPK) model and apply the model to predict maternal, placental, and fetal exposure to nifedipine at different pregnancy stages. A nifedipine PBPK model was verified with nonpregnant data and extended to the pregnant population after the inclusion of the fetoplacental multicompartment model that accounts for the placental tissue and different fetal organs within the Simcyp Simulator version 22. Model parametrization involved scaling nifedipine transplacental clearance based on Caco‐2 permeability, and fetal hepatic clearance was obtained from in vitro to in vivo extrapolation encompassing cytochrome P450 3A7 and 3A4 activities. Predicted concentration profiles were compared with in vivo observations and the transplacental transfer results were evaluated using 2‐fold criteria. The PBPK model predicted a mean cord‐to‐maternal plasma ratio of 0.98 (range, 0.86‐1.06) at term, which agrees with experimental observations of 0.78 (range, 0.59‐0.93). Predicted nifedipine exposure was 1.4‐, 2.0‐, and 3.0‐fold lower at 15, 27, and 39 weeks of gestation when compared with nonpregnant exposure, respectively. This innovative PBPK model can be applied to support maternal and fetal safety assessment for nifedipine at various stages of pregnancy.
科研通智能强力驱动
Strongly Powered by AbleSci AI